
Package index
-
as_embed()as_wordvec()`[`(<embed>)pattern() - Word vectors data class:
wordvecandembed.
-
cosine_similarity()cos_sim()cos_dist() - Cosine similarity/distance between two vectors.
-
data_transform() - Transform plain text of word vectors into
wordvec(data.table) orembed(matrix), saved in a compressed ".RData" file.
-
data_wordvec_load()load_wordvec()load_embed() - Load word vectors data (
wordvecorembed) from ".RData" file.
-
data_wordvec_subset()subset(<wordvec>)subset(<embed>) - [S3 method] Extract a subset of word vectors data.
-
demodata - Demo data (pre-trained using word2vec on Google News; 8000 vocab, 300 dims).
-
dict_expand() - Expand a dictionary from the most similar words.
-
dict_reliability() - Reliability analysis and PCA of a dictionary.
-
get_wordvec() - Extract word vector(s).
-
most_similar() - Find the Top-N most similar words.
-
normalize() - Normalize all word vectors to the unit length 1.
-
orth_procrustes() - Orthogonal Procrustes rotation for matrix alignment.
-
pair_similarity() - Compute a matrix of cosine similarity/distance of word pairs.
-
plot_network() - Visualize a (partial correlation) network graph of words.
-
plot_similarity() - Visualize cosine similarity of word pairs.
-
plot_wordvec() - Visualize word vectors.
-
plot_wordvec_tSNE() - Visualize word vectors with dimensionality reduced using t-SNE.
-
sum_wordvec() - Calculate the sum vector of multiple words.
-
tab_similarity() - Tabulate cosine similarity/distance of word pairs.
-
test_RND() - Relative Norm Distance (RND) analysis.
-
test_WEAT() - Word Embedding Association Test (WEAT) and Single-Category WEAT.
-
tokenize() - Tokenize raw text for training word embeddings.
-
train_wordvec() - Train static word embeddings using the Word2Vec, GloVe, or FastText algorithm.