Skip to contents

Calculate the sum vector of multiple words.

Usage

sum_wordvec(data, x = NULL, verbose = TRUE)

Arguments

data

A wordvec (data.table) or embed (matrix), see data_wordvec_load.

x

Can be:

  • NULL: use the sum of all word vectors in data

  • a single word: "China"

  • a list of words: c("king", "queen")

    cc(" king , queen ; man | woman")

  • an R formula (~ xxx) specifying words that positively and negatively contribute to the similarity (for word analogy): ~ boy - he + she ~ king - man + woman ~ Beijing - China + Japan

verbose

Print information to the console? Defaults to TRUE.

Value

Normalized sum vector.

Download

Download pre-trained word vectors data (.RData): https://psychbruce.github.io/WordVector_RData.pdf

Examples

sum_wordvec(normalize(demodata), ~ king - man + woman)
#>          dim1          dim2          dim3          dim4          dim5 
#> -0.0055029992 -0.0670502053 -0.0451917763  0.0387523404 -0.0028627068 
#>          dim6          dim7          dim8          dim9         dim10 
#> -0.0311541918  0.0722744639 -0.0547962213 -0.0020958381  0.1267937027 
#>         dim11         dim12         dim13         dim14         dim15 
#> -0.1177978229 -0.1116193754 -0.0432157999  0.0087648568 -0.0212594939 
#>         dim16         dim17         dim18         dim19         dim20 
#> -0.0361886454 -0.0145757764 -0.0391255380  0.0236719225  0.0679695260 
#>         dim21         dim22         dim23         dim24         dim25 
#>  0.0825006128  0.0179503178 -0.0102744498  0.0096805959  0.0097418516 
#>         dim26         dim27         dim28         dim29         dim30 
#> -0.0583066547 -0.1043284916  0.0066451406  0.0774529645 -0.0630043398 
#>         dim31         dim32         dim33         dim34         dim35 
#>  0.0176932143 -0.0357660002 -0.0127675640  0.0952755743 -0.1004202304 
#>         dim36         dim37         dim38         dim39         dim40 
#> -0.0307725420  0.0191817489  0.0342936599 -0.0381161430 -0.0036010425 
#>         dim41         dim42         dim43         dim44         dim45 
#> -0.0222736867 -0.0654523468  0.0581761410  0.0386649344  0.0625108822 
#>         dim46         dim47         dim48         dim49         dim50 
#>  0.0144455335 -0.0298451219  0.0179820393 -0.0070950816  0.0410382461 
#>         dim51         dim52         dim53         dim54         dim55 
#>  0.0193902936  0.0009054039 -0.0824461123  0.0896711960 -0.1071550823 
#>         dim56         dim57         dim58         dim59         dim60 
#>  0.0090518215 -0.0452947722 -0.0242425101  0.0499748883  0.0017788248 
#>         dim61         dim62         dim63         dim64         dim65 
#>  0.0896162255  0.0778694536  0.0043599153  0.0777055479  0.0090822422 
#>         dim66         dim67         dim68         dim69         dim70 
#> -0.0272763870  0.0142941177  0.0595841030 -0.0188500428  0.0720441406 
#>         dim71         dim72         dim73         dim74         dim75 
#>  0.0662750676  0.0333189751 -0.0275026411  0.0473774977  0.0302065682 
#>         dim76         dim77         dim78         dim79         dim80 
#>  0.0363555415 -0.0305552844  0.0234168307  0.1017575023  0.0411732703 
#>         dim81         dim82         dim83         dim84         dim85 
#>  0.0094623327  0.0278133126 -0.0067087575  0.0304040180 -0.0629132792 
#>         dim86         dim87         dim88         dim89         dim90 
#>  0.0630248067 -0.0340541402  0.0388550926  0.0546983130  0.0218934638 
#>         dim91         dim92         dim93         dim94         dim95 
#>  0.0433205797 -0.1001378189 -0.0860689768 -0.0450885649  0.0072867091 
#>         dim96         dim97         dim98         dim99        dim100 
#>  0.0317569448  0.0645638429 -0.0160440819  0.0639956819 -0.0188932674 
#>        dim101        dim102        dim103        dim104        dim105 
#>  0.0053826412 -0.0191800667 -0.0261438897 -0.1247332173 -0.1010494892 
#>        dim106        dim107        dim108        dim109        dim110 
#>  0.0587875995 -0.1849463247 -0.0674423763  0.0657176846 -0.0205700926 
#>        dim111        dim112        dim113        dim114        dim115 
#>  0.0666514408  0.0815598320  0.0569012270 -0.0101953971  0.0484093475 
#>        dim116        dim117        dim118        dim119        dim120 
#> -0.1185521372  0.0030313936 -0.0933326263  0.0544090501  0.0927743854 
#>        dim121        dim122        dim123        dim124        dim125 
#>  0.0572259111  0.0394707134 -0.0271925329 -0.0265718034  0.0412028096 
#>        dim126        dim127        dim128        dim129        dim130 
#>  0.0438836936  0.0418592306  0.0034390046  0.0029262269  0.0134619940 
#>        dim131        dim132        dim133        dim134        dim135 
#>  0.0060545735  0.0513732397  0.0327279879  0.1054238844  0.0668562286 
#>        dim136        dim137        dim138        dim139        dim140 
#>  0.0769686804 -0.0227940919 -0.0422079731  0.0703340490 -0.0155774872 
#>        dim141        dim142        dim143        dim144        dim145 
#>  0.0372660027 -0.1356710009  0.0350093190  0.0236513594  0.0484942080 
#>        dim146        dim147        dim148        dim149        dim150 
#> -0.0400414708  0.0188626798  0.0274173715 -0.0486294492  0.0038126260 
#>        dim151        dim152        dim153        dim154        dim155 
#>  0.0133522101  0.0559058596  0.0022117502 -0.0837040985 -0.0849908637 
#>        dim156        dim157        dim158        dim159        dim160 
#> -0.0533659570 -0.0608346184  0.0319297479  0.0282798544  0.0078445029 
#>        dim161        dim162        dim163        dim164        dim165 
#> -0.0496067834 -0.0011413436  0.1585030627 -0.0257539005 -0.0556869160 
#>        dim166        dim167        dim168        dim169        dim170 
#> -0.0376501897  0.0119025195 -0.0722575073 -0.0134277815  0.0713891951 
#>        dim171        dim172        dim173        dim174        dim175 
#> -0.1004959954  0.0377733481  0.1079291741  0.0487607486  0.0176890786 
#>        dim176        dim177        dim178        dim179        dim180 
#> -0.0642323537  0.0939240962  0.0323515907  0.0062917470  0.0628913182 
#>        dim181        dim182        dim183        dim184        dim185 
#> -0.1168540632  0.0042852646 -0.1256198725 -0.0767676420  0.0159300785 
#>        dim186        dim187        dim188        dim189        dim190 
#>  0.0294246554  0.0809427655  0.0357663118 -0.0218166578  0.0638628914 
#>        dim191        dim192        dim193        dim194        dim195 
#>  0.0283086395 -0.0002039863 -0.0330815284  0.0067946163  0.0198031884 
#>        dim196        dim197        dim198        dim199        dim200 
#>  0.0572634491  0.0025753907 -0.0179017809  0.0275942861 -0.0879453025 
#>        dim201        dim202        dim203        dim204        dim205 
#> -0.0565598458  0.0206358787  0.0228473515 -0.0461282294 -0.0145729556 
#>        dim206        dim207        dim208        dim209        dim210 
#> -0.0143933569  0.0095678299  0.0631869552  0.0659021305  0.0042216349 
#>        dim211        dim212        dim213        dim214        dim215 
#>  0.0293649478  0.1033812547 -0.0516775577 -0.1253424596  0.0270994610 
#>        dim216        dim217        dim218        dim219        dim220 
#>  0.0385621533 -0.0036571112 -0.0278117809  0.0295294855  0.0024058853 
#>        dim221        dim222        dim223        dim224        dim225 
#> -0.0144733111  0.0180931805  0.0579378103 -0.0116669835  0.0087559466 
#>        dim226        dim227        dim228        dim229        dim230 
#> -0.0283575865 -0.0278965844 -0.0272467575  0.0342410954  0.0878225024 
#>        dim231        dim232        dim233        dim234        dim235 
#> -0.0741101358 -0.0684089597 -0.1740935244 -0.0044601583  0.0376029740 
#>        dim236        dim237        dim238        dim239        dim240 
#>  0.0221138776  0.0207988624 -0.0113099903 -0.0275133395 -0.0000199454 
#>        dim241        dim242        dim243        dim244        dim245 
#>  0.0563714279 -0.1243700668  0.0584321684  0.0294712221  0.0939427080 
#>        dim246        dim247        dim248        dim249        dim250 
#> -0.0011363452 -0.0734356129  0.0425710531  0.0715560074 -0.0782001568 
#>        dim251        dim252        dim253        dim254        dim255 
#>  0.0274794287  0.0326764105  0.0565690520 -0.0124150119  0.0545865281 
#>        dim256        dim257        dim258        dim259        dim260 
#>  0.0131866584 -0.1333997208 -0.0673208573 -0.0237475804 -0.0439831482 
#>        dim261        dim262        dim263        dim264        dim265 
#>  0.0048958304  0.0900008028 -0.0692655794  0.0177480897 -0.0185615675 
#>        dim266        dim267        dim268        dim269        dim270 
#> -0.0438003657  0.0037071559  0.0152207093  0.0955843067  0.1068395259 
#>        dim271        dim272        dim273        dim274        dim275 
#>  0.0044241142  0.1174178922 -0.0404572738  0.0672502162 -0.0424039690 
#>        dim276        dim277        dim278        dim279        dim280 
#> -0.1056443456 -0.0766069551  0.0035567801 -0.0748190562  0.0503630702 
#>        dim281        dim282        dim283        dim284        dim285 
#>  0.0909204843 -0.0668049051  0.0951348101 -0.0171847044  0.0625944510 
#>        dim286        dim287        dim288        dim289        dim290 
#> -0.0035357800 -0.0205028927 -0.0161002229 -0.0182009416  0.0601725192 
#>        dim291        dim292        dim293        dim294        dim295 
#> -0.0265177060 -0.0849906153 -0.0761131339 -0.1206830347  0.0004351351 
#>        dim296        dim297        dim298        dim299        dim300 
#>  0.0062921084 -0.0137075363  0.0623639418  0.0806824072  0.0592501645 
#> attr(,"formula")
#> [1] "king - man + woman"
#> attr(,"x.words")
#> [1] "king"  "woman" "man"