版权声明:本套课程材料开源,使用和分享必须遵守「创作共用许可协议 CC BY-NC-SA」(来源引用-非商业用途使用-以相同方式共享)。
## 数据准备:大五人格问卷BFI(完整数据)
data = as.data.table(psych::bfi)
data[, let(
Gender = factor(gender, levels=1:2, labels=c("Male", "Female")),
Age = as.numeric(age),
Edu = as.factor(education),
E = MEAN(data, "E", 1:5, rev=c(1,2), range=1:6),
A = MEAN(data, "A", 1:5, rev=1, range=1:6),
C = MEAN(data, "C", 1:5, rev=c(4,5), range=1:6),
N = MEAN(data, "N", 1:5, rev=NULL, range=1:6),
O = MEAN(data, "O", 1:5, rev=c(2,5), range=1:6)
)]
str(data)Classes 'data.table' and 'data.frame': 2800 obs. of 36 variables:
$ A1 : int 2 2 5 4 2 6 2 4 4 2 ...
$ A2 : int 4 4 4 4 3 6 5 3 3 5 ...
$ A3 : int 3 5 5 6 3 5 5 1 6 6 ...
$ A4 : int 4 2 4 5 4 6 3 5 3 6 ...
$ A5 : int 4 5 4 5 5 5 5 1 3 5 ...
$ C1 : int 2 5 4 4 4 6 5 3 6 6 ...
$ C2 : int 3 4 5 4 4 6 4 2 6 5 ...
$ C3 : int 3 4 4 3 5 6 4 4 3 6 ...
$ C4 : int 4 3 2 5 3 1 2 2 4 2 ...
$ C5 : int 4 4 5 5 2 3 3 4 5 1 ...
$ E1 : int 3 1 2 5 2 2 4 3 5 2 ...
$ E2 : int 3 1 4 3 2 1 3 6 3 2 ...
$ E3 : int 3 6 4 4 5 6 4 4 NA 4 ...
$ E4 : int 4 4 4 4 4 5 5 2 4 5 ...
$ E5 : int 4 3 5 4 5 6 5 1 3 5 ...
$ N1 : int 3 3 4 2 2 3 1 6 5 5 ...
$ N2 : int 4 3 5 5 3 5 2 3 5 5 ...
$ N3 : int 2 3 4 2 4 2 2 2 2 5 ...
$ N4 : int 2 5 2 4 4 2 1 6 3 2 ...
$ N5 : int 3 5 3 1 3 3 1 4 3 4 ...
$ O1 : int 3 4 4 3 3 4 5 3 6 5 ...
$ O2 : int 6 2 2 3 3 3 2 2 6 1 ...
$ O3 : int 3 4 5 4 4 5 5 4 6 5 ...
$ O4 : int 4 3 5 3 3 6 6 5 6 5 ...
$ O5 : int 3 3 2 5 3 1 1 3 1 2 ...
$ gender : int 1 2 2 2 1 2 1 1 1 2 ...
$ education: int NA NA NA NA NA 3 NA 2 1 NA ...
$ age : int 16 18 17 17 17 21 18 19 19 17 ...
$ Gender : Factor w/ 2 levels "Male","Female": 1 2 2 2 1 2 1 1 1 2 ...
$ Age : num 16 18 17 17 17 21 18 19 19 17 ...
$ Edu : Factor w/ 5 levels "1","2","3","4",..: NA NA NA NA NA 3 NA 2 1 NA ...
$ E : num 3.8 5 4.2 3.6 4.8 5.6 4.2 2.4 3.25 4.8 ...
$ A : num 4 4.2 3.8 4.6 4 4.6 4.6 2.6 3.6 5.4 ...
$ C : num 2.8 4 4 3 4.4 5.6 4.4 3.4 4 5.6 ...
$ N : num 2.8 3.8 3.6 2.8 3.2 3 1.4 4.2 3.6 4.2 ...
$ O : num 3 4 4.8 3.2 3.6 5 5.4 4.2 5 5.2 ...
- attr(*, ".internal.selfref")=<externalptr>
## Freq(x, varname, labels, sort, digits, file)
## 请查阅帮助文档:?Freq 或 help(Freq)
Freq(data$Gender) # 直接放变量Frequency Statistics:
─────────────────
N %
─────────────────
Male 919 32.8
Female 1881 67.2
─────────────────
Total N = 2,800
Frequency Statistics:
─────────────────
N %
─────────────────
Male 919 32.8
Female 1881 67.2
─────────────────
Total N = 2,800
Frequency Statistics:
───────────────────
N %
───────────────────
Male 919 32.821
Female 1881 67.179
───────────────────
Total N = 2,800
✔ Table saved to "D:/RStudio/RCourse/Freq.doc"
Frequency Statistics:
───────────────
N %
───────────────
1 224 8.0
2 292 10.4
3 1249 44.6
4 394 14.1
5 418 14.9
(NA) 223 8.0
───────────────
Total N = 2,800
Valid N = 2,577
Frequency Statistics:
───────────────
N %
───────────────
3 1249 44.6
5 418 14.9
4 394 14.1
2 292 10.4
1 224 8.0
(NA) 223 8.0
───────────────
Total N = 2,800
Valid N = 2,577
Frequency Statistics:
───────────────
N %
───────────────
(NA) 223 8.0
1 224 8.0
2 292 10.4
4 394 14.1
5 418 14.9
3 1249 44.6
───────────────
Total N = 2,800
Valid N = 2,577
Frequency Statistics:
───────────
N %
───────────
3 1 0.0
9 1 0.0
11 3 0.1
12 28 1.0
13 7 0.2
14 21 0.8
15 26 0.9
16 61 2.2
17 100 3.6
18 124 4.4
19 190 6.8
20 212 7.6
21 144 5.1
22 122 4.4
23 138 4.9
24 105 3.8
25 113 4.0
26 99 3.5
27 97 3.5
28 86 3.1
29 78 2.8
30 65 2.3
31 73 2.6
32 66 2.4
33 50 1.8
34 52 1.9
35 52 1.9
36 50 1.8
37 36 1.3
38 52 1.9
39 50 1.8
40 56 2.0
41 32 1.1
42 30 1.1
43 37 1.3
44 25 0.9
45 28 1.0
46 25 0.9
47 21 0.8
48 30 1.1
49 16 0.6
50 34 1.2
51 24 0.9
52 26 0.9
53 17 0.6
54 14 0.5
55 17 0.6
56 17 0.6
57 9 0.3
58 7 0.2
59 5 0.2
60 6 0.2
61 4 0.1
62 4 0.1
63 3 0.1
64 1 0.0
65 1 0.0
66 1 0.0
67 3 0.1
68 1 0.0
70 1 0.0
72 1 0.0
74 1 0.0
86 1 0.0
───────────
Total N = 2,800
## Describe(data, ..., digits, file, plot, plot.file, ...)
## 请查阅帮助文档:?Describe 或 help(Describe)
Describe(data$Age)Descriptive Statistics:
─────────────────────────────────────────────────────────
N Mean SD | Median Min Max Skewness Kurtosis
─────────────────────────────────────────────────────────
2800 28.78 11.13 | 26.00 3.00 86.00 1.02 0.56
─────────────────────────────────────────────────────────
Descriptive Statistics:
─────────────────────────────────────────────────────────
N Mean SD | Median Min Max Skewness Kurtosis
─────────────────────────────────────────────────────────
2800 28.78 11.13 | 26.00 3.00 86.00 1.02 0.56
─────────────────────────────────────────────────────────
NOTE: `Gender`, `Edu` transformed to numeric.
Descriptive Statistics:
────────────────────────────────────────────────────────────────────
N (NA) Mean SD | Median Min Max Skewness Kurtosis
────────────────────────────────────────────────────────────────────
Gender* 2800 1.67 0.47 | 2.00 1.00 2.00 -0.73 -1.47
Age 2800 28.78 11.13 | 26.00 3.00 86.00 1.02 0.56
Edu* 2577 223 3.19 1.11 | 3.00 1.00 5.00 -0.05 -0.32
────────────────────────────────────────────────────────────────────
NOTE: `Gender`, `Edu` transformed to numeric.
Descriptive Statistics:
────────────────────────────────────────────────────────────────────
N (NA) Mean SD | Median Min Max Skewness Kurtosis
────────────────────────────────────────────────────────────────────
Gender* 2800 1.67 0.47 | 2.00 1.00 2.00 -0.73 -1.47
Age 2800 28.78 11.13 | 26.00 3.00 86.00 1.02 0.56
Edu* 2577 223 3.19 1.11 | 3.00 1.00 5.00 -0.05 -0.32
E 2800 4.15 1.06 | 4.20 1.00 6.00 -0.48 -0.21
A 2800 4.65 0.90 | 4.80 1.00 6.00 -0.76 0.40
C 2800 4.27 0.95 | 4.40 1.00 6.00 -0.40 -0.19
N 2800 3.16 1.20 | 3.00 1.00 6.00 0.21 -0.67
O 2800 4.59 0.81 | 4.60 1.20 6.00 -0.34 -0.29
────────────────────────────────────────────────────────────────────
NOTE: `Gender`, `Edu` transformed to numeric.
✔ Table saved to "D:/RStudio/RCourse/Desc.doc"
## Corr(data, method, ..., digits, file, plot, plot.file, ...)
## 请查阅帮助文档:?Corr 或 help(Corr)
Corr(data[, Gender:O])NOTE: `Gender`, `Edu` transformed to numeric.
Pearson's r and 95% confidence intervals:
───────────────────────────────────────────────
r [95% CI] p N
───────────────────────────────────────────────
Gender-Age 0.05 [ 0.01, 0.08] .012 * 2800
Gender-Edu 0.01 [-0.03, 0.05] .695 2577
Gender-E 0.11 [ 0.07, 0.14] <.001 *** 2800
Gender-A 0.21 [ 0.17, 0.24] <.001 *** 2800
Gender-C 0.09 [ 0.06, 0.13] <.001 *** 2800
Gender-N 0.12 [ 0.09, 0.16] <.001 *** 2800
Gender-O -0.06 [-0.10, -0.02] .002 ** 2800
Age-Edu 0.24 [ 0.21, 0.28] <.001 *** 2577
Age-E 0.06 [ 0.03, 0.10] <.001 *** 2800
Age-A 0.19 [ 0.15, 0.22] <.001 *** 2800
Age-C 0.12 [ 0.08, 0.15] <.001 *** 2800
Age-N -0.12 [-0.15, -0.08] <.001 *** 2800
Age-O 0.08 [ 0.04, 0.12] <.001 *** 2800
Edu-E 0.01 [-0.03, 0.05] .697 2577
Edu-A 0.05 [ 0.01, 0.08] .021 * 2577
Edu-C 0.02 [-0.02, 0.06] .305 2577
Edu-N -0.05 [-0.09, -0.01] .012 * 2577
Edu-O 0.11 [ 0.07, 0.14] <.001 *** 2577
E-A 0.46 [ 0.43, 0.49] <.001 *** 2800
E-C 0.26 [ 0.23, 0.30] <.001 *** 2800
E-N -0.22 [-0.26, -0.18] <.001 *** 2800
E-O 0.21 [ 0.18, 0.25] <.001 *** 2800
A-C 0.26 [ 0.22, 0.29] <.001 *** 2800
A-N -0.19 [-0.22, -0.15] <.001 *** 2800
A-O 0.15 [ 0.11, 0.18] <.001 *** 2800
C-N -0.23 [-0.27, -0.20] <.001 *** 2800
C-O 0.20 [ 0.16, 0.23] <.001 *** 2800
N-O -0.09 [-0.12, -0.05] <.001 *** 2800
───────────────────────────────────────────────
NOTE: `Gender`, `Edu` transformed to numeric.
Descriptive Statistics and Correlation Matrix:
NOTE: `Gender`, `Edu` transformed to numeric.
✔ Table saved to "D:/RStudio/RCourse/Corr.doc"
注意:较早版本SPSS的相关系数表,只输出到** p < .01显著性水平,不够精确。
最新学术规范:大于.001的需要报告精确p值(如p = .035、p = .006、p < .001),不能只报告范围(如p < .05)!p值不能等于0(不能写p = .000,要写p < .001)!
effectsize::interpret_r()函数帮助文档)
[1] "tiny"
(Rules: funder2019)
[1] "very small"
(Rules: funder2019)
[1] "small"
(Rules: funder2019)
[1] "medium"
(Rules: funder2019)
[1] "large"
(Rules: funder2019)
[1] "very large"
(Rules: funder2019)
One-Sample t-test
Hypothesis: two-sided (μ ≠ 0)
Descriptives:
────────────────────────────
Variable N Mean (S.D.)
────────────────────────────
Age 2800 28.78 (11.13)
────────────────────────────
Results of t-test:
─────────────────────────────────────────────────────────────────────────────
t df p Difference [95% CI] Cohen’s d [95% CI]
─────────────────────────────────────────────────────────────────────────────
Age: (Age - 0) 136.87 2799 <.001 *** 28.78 [28.37, 29.19] 2.59 [2.55, 2.62]
─────────────────────────────────────────────────────────────────────────────
One-Sample t-test
Hypothesis: two-sided (μ ≠ 20)
Descriptives:
────────────────────────────
Variable N Mean (S.D.)
────────────────────────────
Age 2800 28.78 (11.13)
────────────────────────────
Results of t-test:
────────────────────────────────────────────────────────────────────────────
t df p Difference [95% CI] Cohen’s d [95% CI]
────────────────────────────────────────────────────────────────────────────
Age: (Age - 20) 41.76 2799 <.001 *** 8.78 [8.37, 9.19] 0.79 [0.75, 0.83]
────────────────────────────────────────────────────────────────────────────
One-Sample t-test
Hypothesis: two-sided (μ ≠ 28)
Descriptives:
────────────────────────────
Variable N Mean (S.D.)
────────────────────────────
Age 2800 28.78 (11.13)
────────────────────────────
Results of t-test:
───────────────────────────────────────────────────────────────────────────
t df p Difference [95% CI] Cohen’s d [95% CI]
───────────────────────────────────────────────────────────────────────────
Age: (Age - 28) 3.72 2799 <.001 *** 0.78 [0.37, 1.19] 0.07 [0.03, 0.11]
───────────────────────────────────────────────────────────────────────────
Independent-Samples t-test
Hypothesis: two-sided (μ2 - μ1 ≠ 0)
Descriptives:
───────────────────────────────────────
Variable Factor Level N Mean (S.D.)
───────────────────────────────────────
E gender 1 919 3.99 (1.12)
E gender 2 1881 4.22 (1.02)
───────────────────────────────────────
Levene’s test for homogeneity of variance:
────────────────────────────────────────────────
Levene’s F df1 df2 p
────────────────────────────────────────────────
E: gender (2 - 1) 9.87 1 2798 .002 **
────────────────────────────────────────────────
Note: H0 = equal variance (homoscedasticity).
If significant (violation of the assumption),
then you should better set `var.equal=FALSE`.
Results of t-test:
─────────────────────────────────────────────────────────────────────────────
t df p Difference [95% CI] Cohen’s d [95% CI]
─────────────────────────────────────────────────────────────────────────────
E: gender (2 - 1) 5.60 2798 <.001 *** 0.24 [0.15, 0.32] 0.23 [0.15, 0.30]
─────────────────────────────────────────────────────────────────────────────
Independent-Samples t-test
Hypothesis: two-sided (μ2 - μ1 ≠ 0)
Descriptives:
───────────────────────────────────────
Variable Factor Level N Mean (S.D.)
───────────────────────────────────────
E gender 1 919 3.99 (1.12)
E gender 2 1881 4.22 (1.02)
───────────────────────────────────────
Levene’s test for homogeneity of variance:
────────────────────────────────────────────────
Levene’s F df1 df2 p
────────────────────────────────────────────────
E: gender (2 - 1) 9.87 1 2798 .002 **
────────────────────────────────────────────────
Note: H0 = equal variance (homoscedasticity).
If significant (violation of the assumption),
then you should better set `var.equal=FALSE`.
Results of t-test (adjusted df):
────────────────────────────────────────────────────────────────────────────────
t df p Difference [95% CI] Cohen’s d [95% CI]
────────────────────────────────────────────────────────────────────────────────
E: gender (2 - 1) 5.43 1682.75 <.001 *** 0.24 [0.15, 0.32] 0.22 [0.14, 0.30]
────────────────────────────────────────────────────────────────────────────────
Independent-Samples t-test
Hypothesis: two-sided (μ2 - μ1 ≠ 0)
Descriptives:
───────────────────────────────────────
Variable Factor Level N Mean (S.D.)
───────────────────────────────────────
E gender 1 919 3.99 (1.12)
E gender 2 1881 4.22 (1.02)
A gender 1 919 4.39 (0.93)
A gender 2 1881 4.78 (0.85)
C gender 1 919 4.14 (0.97)
C gender 2 1881 4.33 (0.94)
N gender 1 919 2.95 (1.14)
N gender 2 1881 3.27 (1.21)
O gender 1 919 4.65 (0.81)
O gender 2 1881 4.55 (0.80)
───────────────────────────────────────
Levene’s test for homogeneity of variance:
────────────────────────────────────────────────
Levene’s F df1 df2 p
────────────────────────────────────────────────
E: gender (2 - 1) 9.87 1 2798 .002 **
A: gender (2 - 1) 8.94 1 2798 .003 **
C: gender (2 - 1) 2.30 1 2798 .129
N: gender (2 - 1) 5.15 1 2798 .023 *
O: gender (2 - 1) 1.11 1 2798 .293
────────────────────────────────────────────────
Note: H0 = equal variance (homoscedasticity).
If significant (violation of the assumption),
then you should better set `var.equal=FALSE`.
Results of t-test:
─────────────────────────────────────────────────────────────────────────────────
t df p Difference [95% CI] Cohen’s d [95% CI]
─────────────────────────────────────────────────────────────────────────────────
E: gender (2 - 1) 5.60 2798 <.001 *** 0.24 [ 0.15, 0.32] 0.23 [ 0.15, 0.30]
A: gender (2 - 1) 11.22 2798 <.001 *** 0.40 [ 0.33, 0.47] 0.45 [ 0.37, 0.53]
C: gender (2 - 1) 4.98 2798 <.001 *** 0.19 [ 0.11, 0.26] 0.20 [ 0.12, 0.28]
N: gender (2 - 1) 6.60 2798 <.001 *** 0.32 [ 0.22, 0.41] 0.27 [ 0.19, 0.34]
O: gender (2 - 1) -3.11 2798 .002 ** -0.10 [-0.16, -0.04] -0.13 [-0.20, -0.05]
─────────────────────────────────────────────────────────────────────────────────
TTEST(data,
y = c("E", "A", "C", "N", "O"),
x = "Gender",
bf10 = TRUE, # 计算贝叶斯因子(BF10)
file = "T-test1.doc") ID A1 A2 A3 A4
1 S1 3 4 8 9
2 S2 6 6 9 8
3 S3 4 4 8 8
4 S4 3 2 7 7
5 S5 5 4 5 12
6 S6 7 5 6 13
7 S7 5 3 7 12
8 S8 2 3 6 11
Paired-Samples t-test
Hypothesis: two-sided (μ2 - μ1 ≠ 0)
Descriptives:
───────────────────────
Variable N Mean (S.D.)
───────────────────────
A1 8 4.38 (1.69)
A2 8 3.88 (1.25)
───────────────────────
Results of t-test:
─────────────────────────────────────────────────────────────────────────────
t df p Difference [95% CI] Cohen’s d [95% CI]
─────────────────────────────────────────────────────────────────────────────
Paired: (A2 - A1) -1.18 7 .275 -0.50 [-1.50, 0.50] -0.42 [-1.25, 0.42]
─────────────────────────────────────────────────────────────────────────────
Paired-Samples t-test
Hypothesis: two-sided (μ2 - μ1 ≠ 0)
Descriptives:
────────────────────────
Variable N Mean (S.D.)
────────────────────────
A1 8 4.38 (1.69)
A2 8 3.88 (1.25)
A3 8 7.00 (1.31)
A4 8 10.00 (2.27)
────────────────────────
Results of t-test:
─────────────────────────────────────────────────────────────────────────────
t df p Difference [95% CI] Cohen’s d [95% CI]
─────────────────────────────────────────────────────────────────────────────
Paired: (A2 - A1) -1.18 7 .275 -0.50 [-1.50, 0.50] -0.42 [-1.25, 0.42]
Paired: (A4 - A3) 2.54 7 .039 * 3.00 [ 0.21, 5.79] 0.90 [ 0.06, 1.73]
─────────────────────────────────────────────────────────────────────────────
[1] 0.05
z = 1.96, p = 0.050 *
z = 2.58, p = 0.010 **
z = 3.30, p = 1e-03 ***
[1] 0.04821
t(100) = 2.00, p = 0.048 *
t(1000) = 2.00, p = 0.046 *
t(10000) = 2.00, p = 0.046 *
[1] 0.04821
F(1, 100) = 4.00, p = 0.048 *
[1] 0.04604
r(98) = 0.20, p = 0.046 *
r(98) = 0.30, p = 0.002 **
r(98) = 0.40, p = 4e-05 ***
r(98) = 0.20, p = 0.046 *
r(998) = 0.20, p = 2e-10 ***
r(9998) = 0.20, p = 9e-91 ***
[1] 0.05004
χ²(1) = 3.84, p = 0.050 .
var + items: common and
unique parts of variable namesvars: a character vector of variable
namesvarrange: starting and stopping
positions of variables## Alpha(data, var, items, ..., rev, digits)
## 请查阅帮助文档:?Alpha 或 help(Alpha)
Alpha(data, "E", 1:5) # 外倾性:E1、E2应该反向计分
Reliability Analysis
Summary:
Total Items: 5
Scale Range: 1 ~ 6
Total Cases: 2800
Valid Cases: 2713 (96.9%)
Scale Statistics:
Mean = 3.791
S.D. = 0.542
Cronbach’s α = -0.624
McDonald’s ω = 0.150
Warning: Scale reliability is low. You may check item codings.
Items E1, E2 correlate negatively with the scale and may be reversed.
You can specify this argument: rev=c("E1", "E2")
Item Statistics (Cronbach’s α If Item Deleted):
─────────────────────────────────────────────
Mean S.D. Item-Rest Cor. Cronbach’s α
─────────────────────────────────────────────
E1 2.972 (1.632) -0.263 -0.270
E2 3.144 (1.607) -0.355 -0.074
E3 4.000 (1.352) -0.002 -0.881
E4 4.421 (1.461) -0.202 -0.423
E5 4.418 (1.337) -0.047 -0.765
─────────────────────────────────────────────
Item-Rest Cor. = Corrected Item-Total Correlation
Reliability Analysis
Summary:
Total Items: 5
Scale Range: 1 ~ 6
Total Cases: 2800
Valid Cases: 2713 (96.9%)
Scale Statistics:
Mean = 4.145
S.D. = 1.060
Cronbach’s α = 0.761
McDonald’s ω = 0.763
Item Statistics (Cronbach’s α If Item Deleted):
───────────────────────────────────────────────────
Mean S.D. Item-Rest Cor. Cronbach’s α
───────────────────────────────────────────────────
E1 (rev) 4.028 (1.632) 0.513 0.725
E2 (rev) 3.856 (1.607) 0.606 0.688
E3 4.000 (1.352) 0.501 0.728
E4 4.421 (1.461) 0.578 0.701
E5 4.418 (1.337) 0.455 0.742
───────────────────────────────────────────────────
Item-Rest Cor. = Corrected Item-Total Correlation
Reliability Analysis
Summary:
Total Items: 5
Scale Range: 1 ~ 6
Total Cases: 2800
Valid Cases: 2709 (96.8%)
Scale Statistics:
Mean = 4.643
S.D. = 0.901
Cronbach’s α = 0.704
McDonald’s ω = 0.724
Item Statistics (Cronbach’s α If Item Deleted):
───────────────────────────────────────────────────
Mean S.D. Item-Rest Cor. Cronbach’s α
───────────────────────────────────────────────────
A1 (rev) 4.588 (1.405) 0.311 0.718
A2 4.797 (1.176) 0.563 0.618
A3 4.599 (1.305) 0.589 0.601
A4 4.682 (1.486) 0.395 0.687
A5 4.551 (1.262) 0.487 0.645
───────────────────────────────────────────────────
Item-Rest Cor. = Corrected Item-Total Correlation
Reliability Analysis
Summary:
Total Items: 5
Scale Range: 1 ~ 6
Total Cases: 2800
Valid Cases: 2707 (96.7%)
Scale Statistics:
Mean = 4.262
S.D. = 0.954
Cronbach’s α = 0.729
McDonald’s ω = 0.734
Item Statistics (Cronbach’s α If Item Deleted):
───────────────────────────────────────────────────
Mean S.D. Item-Rest Cor. Cronbach’s α
───────────────────────────────────────────────────
C1 4.509 (1.238) 0.455 0.696
C2 4.364 (1.321) 0.507 0.677
C3 4.299 (1.289) 0.468 0.691
C4 (rev) 4.446 (1.374) 0.557 0.656
C5 (rev) 3.692 (1.628) 0.478 0.694
───────────────────────────────────────────────────
Item-Rest Cor. = Corrected Item-Total Correlation
Reliability Analysis
Summary:
Total Items: 5
Scale Range: 1 ~ 6
Total Cases: 2800
Valid Cases: 2694 (96.2%)
Scale Statistics:
Mean = 3.164
S.D. = 1.195
Cronbach’s α = 0.813
McDonald’s ω = 0.818
Item Statistics (Cronbach’s α If Item Deleted):
─────────────────────────────────────────────
Mean S.D. Item-Rest Cor. Cronbach’s α
─────────────────────────────────────────────
N1 2.931 (1.573) 0.666 0.757
N2 3.509 (1.526) 0.651 0.763
N3 3.217 (1.600) 0.673 0.755
N4 3.190 (1.573) 0.542 0.795
N5 2.973 (1.622) 0.487 0.812
─────────────────────────────────────────────
Item-Rest Cor. = Corrected Item-Total Correlation
Reliability Analysis
Summary:
Total Items: 5
Scale Range: 1 ~ 6
Total Cases: 2800
Valid Cases: 2726 (97.4%)
Scale Statistics:
Mean = 4.594
S.D. = 0.807
Cronbach’s α = 0.603
McDonald’s ω = 0.618
Item Statistics (Cronbach’s α If Item Deleted):
───────────────────────────────────────────────────
Mean S.D. Item-Rest Cor. Cronbach’s α
───────────────────────────────────────────────────
O1 4.819 (1.128) 0.389 0.536
O2 (rev) 4.300 (1.562) 0.340 0.566
O3 4.439 (1.221) 0.452 0.500
O4 4.898 (1.217) 0.220 0.614
O5 (rev) 4.516 (1.325) 0.416 0.516
───────────────────────────────────────────────────
Item-Rest Cor. = Corrected Item-Total Correlation
Principal Component Analysis
Summary:
Total Items: 5
Scale Range: 1 ~ 6
Total Cases: 2800
Valid Cases: 2713 (96.9%)
Extraction Method:
- Principal Component Analysis
Rotation Method:
- (Only one component was extracted. The solution was not rotated.)
KMO and Bartlett's Test:
- Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy: MSA = 0.799
- Bartlett's Test of Sphericity: Approx. χ²(10) = 3011.40, p < 1e-99 ***
Total Variance Explained:
──────────────────────────────────────────────────────────────────────────────────
Eigenvalue Variance % Cumulative % SS Loading Variance % Cumulative %
──────────────────────────────────────────────────────────────────────────────────
Component 1 2.565 51.298 51.298 2.565 51.298 51.298
Component 2 0.768 15.368 66.666
Component 3 0.643 12.851 79.517
Component 4 0.561 11.211 90.728
Component 5 0.464 9.272 100.000
──────────────────────────────────────────────────────────────────────────────────
Component Loadings (Sorted by Size):
──────────────────────
PC1 Communality
──────────────────────
E2 -0.780 0.608
E4 0.758 0.575
E1 -0.700 0.490
E3 0.691 0.477
E5 0.644 0.414
──────────────────────
Communality = Sum of Squared (SS) Factor Loadings
(Uniqueness = 1 - Communality)
Principal Component Analysis
Summary:
Total Items: 25
Scale Range: 1 ~ 6
Total Cases: 2800
Valid Cases: 2436 (87.0%)
Extraction Method:
- Principal Component Analysis
Rotation Method:
- Varimax (with Kaiser Normalization)
KMO and Bartlett's Test:
- Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy: MSA = 0.849
- Bartlett's Test of Sphericity: Approx. χ²(300) = 18146.07, p < 1e-99 ***
Total Variance Explained:
───────────────────────────────────────────────────────────────────────────────────
Eigenvalue Variance % Cumulative % SS Loading Variance % Cumulative %
───────────────────────────────────────────────────────────────────────────────────
Component 1 5.134 20.537 20.537 3.185 12.738 12.738
Component 2 2.752 11.008 31.545 3.100 12.400 25.138
Component 3 2.143 8.571 40.116 2.619 10.476 35.615
Component 4 1.852 7.409 47.525 2.378 9.512 45.127
Component 5 1.548 6.193 53.718 2.148 8.591 53.718
Component 6 1.074 4.294 58.012
Component 7 0.840 3.358 61.370
Component 8 0.799 3.197 64.567
Component 9 0.719 2.876 67.443
Component 10 0.688 2.752 70.195
Component 11 0.676 2.705 72.901
Component 12 0.652 2.607 75.508
Component 13 0.623 2.493 78.001
Component 14 0.597 2.386 80.387
Component 15 0.563 2.252 82.640
Component 16 0.543 2.173 84.813
Component 17 0.515 2.058 86.871
Component 18 0.495 1.978 88.849
Component 19 0.483 1.931 90.779
Component 20 0.449 1.796 92.575
Component 21 0.423 1.693 94.269
Component 22 0.401 1.603 95.871
Component 23 0.388 1.551 97.422
Component 24 0.382 1.527 98.950
Component 25 0.263 1.050 100.000
───────────────────────────────────────────────────────────────────────────────────
Component Loadings (Rotated) (Sorted by Size):
─────────────────────────────────────────────────
RC2 RC1 RC3 RC5 RC4 Communality
─────────────────────────────────────────────────
N1 0.806 0.710
N2 0.794 0.670
N3 0.794 0.636
N4 0.649 0.587
N5 0.631 0.482
E2 -0.722 0.608
E4 0.700 0.610
E1 -0.679 0.478
E3 0.625 0.532
E5 0.586 0.506
C2 0.738 0.579
C4 -0.692 0.566
C3 0.679 0.478
C1 0.654 0.483
C5 -0.627 0.532
A2 0.716 0.582
A3 0.689 0.606
A1 -0.638 0.467
A5 0.572 0.542
A4 0.530 0.424
O5 -0.677 0.473
O3 0.640 0.561
O2 -0.606 0.436
O1 0.598 0.444
O4 0.494 0.440
─────────────────────────────────────────────────
Communality = Sum of Squared (SS) Factor Loadings
(Uniqueness = 1 - Communality)
Model Syntax (lavaan):
E =~ E1 + E2 + E3 + E4 + E5
A =~ A1 + A2 + A3 + A4 + A5
C =~ C1 + C2 + C3 + C4 + C5
N =~ N1 + N2 + N3 + N4 + N5
O =~ O1 + O2 + O3 + O4 + O5
Fit Measures (lavaan):
χ²(265, N = 2236) = 3843.296, p < 1e-99 ***
χ²/df = 14.503
AIC = 182698.556 (Akaike Information Criterion)
BIC = 183041.303 (Bayesian Information Criterion)
CFI = 0.780 (Comparative Fit Index)
TLI = 0.751 (Tucker-Lewis Index; Non-Normed Fit Index, NNFI)
NFI = 0.768 (Normed Fit Index)
IFI = 0.780 (Incremental Fit Index)
GFI = 0.862 (Goodness-of-Fit Index)
AGFI = 0.830 (Adjusted Goodness-of-Fit Index)
RMSEA = 0.078, 90% CI [0.076, 0.080] (Root Mean Square Error of Approximation)
SRMR = 0.076 (Standardized Root Mean Square Residual)
Model Estimates (lavaan):
──────────────────────────────────────────────────────────────────────────
Estimate S.E. z p LLCI ULCI Beta
──────────────────────────────────────────────────────────────────────────
Latent Variables:
E =~ E1 0.907 (0.035) 26.094 <.001 *** 0.838 0.975 0.560
E =~ E2 1.114 (0.033) 33.914 <.001 *** 1.049 1.178 0.694
E =~ E3 -0.866 (0.028) -30.936 <.001 *** -0.920 -0.811 -0.645
E =~ E4 -1.027 (0.030) -34.530 <.001 *** -1.085 -0.968 -0.704
E =~ E5 -0.746 (0.029) -26.147 <.001 *** -0.802 -0.691 -0.561
A =~ A1 0.460 (0.032) 14.328 <.001 *** 0.397 0.523 0.330
A =~ A2 -0.734 (0.025) -29.758 <.001 *** -0.782 -0.685 -0.634
A =~ A3 -0.955 (0.027) -35.954 <.001 *** -1.008 -0.903 -0.741
A =~ A4 -0.728 (0.032) -22.664 <.001 *** -0.791 -0.665 -0.503
A =~ A5 -0.852 (0.026) -32.282 <.001 *** -0.903 -0.800 -0.678
C =~ C1 0.652 (0.028) 23.697 <.001 *** 0.598 0.706 0.536
C =~ C2 0.758 (0.029) 25.826 <.001 *** 0.700 0.815 0.578
C =~ C3 0.707 (0.029) 24.376 <.001 *** 0.650 0.764 0.550
C =~ C4 -0.949 (0.030) -32.012 <.001 *** -1.008 -0.891 -0.697
C =~ C5 -1.014 (0.036) -28.108 <.001 *** -1.084 -0.943 -0.622
N =~ N1 1.284 (0.029) 43.743 <.001 *** 1.227 1.342 0.821
N =~ N2 1.222 (0.029) 41.954 <.001 *** 1.165 1.279 0.796
N =~ N3 1.152 (0.031) 36.823 <.001 *** 1.091 1.214 0.722
N =~ N4 0.891 (0.033) 27.399 <.001 *** 0.827 0.955 0.571
N =~ N5 0.825 (0.035) 23.897 <.001 *** 0.757 0.892 0.509
O =~ O1 0.629 (0.027) 23.245 <.001 *** 0.576 0.682 0.562
O =~ O2 -0.666 (0.038) -17.641 <.001 *** -0.740 -0.592 -0.431
O =~ O3 0.861 (0.029) 29.360 <.001 *** 0.804 0.919 0.722
O =~ O4 0.260 (0.029) 8.850 <.001 *** 0.203 0.318 0.221
O =~ O5 -0.633 (0.032) -19.604 <.001 *** -0.696 -0.570 -0.476
──────────────────────────────────────────────────────────────────────────
Note. Raw (Standard) Confidence Interval (CI) and SE.
Estimator: ML
作业要求:
平台提交: