Tidy report of mediation analysis,
which is performed using the mediation
package.
Arguments
- model
Mediation model built using
mediation::mediate()
.- digits
Number of decimal places of output. Defaults to
3
.- file
File name of MS Word (
.doc
).
Examples
if (FALSE) {
library(mediation)
# ?mediation::mediate
## Example 1: OLS Regression
## Bias-corrected and accelerated (BCa) bootstrap confidence intervals
## Hypothesis: Solar radiation -> Ozone -> Daily temperature
lm.m = lm(Ozone ~ Solar.R + Month + Wind, data=airquality)
lm.y = lm(Temp ~ Ozone + Solar.R + Month + Wind, data=airquality)
set.seed(123) # set a random seed for reproduction
med = mediate(lm.m, lm.y,
treat="Solar.R", mediator="Ozone",
sims=1000, boot=TRUE, boot.ci.type="bca")
med_summary(med)
## Example 2: Multilevel Linear Model (Linear Mixed Model)
## (models must be fit using "lme4::lmer" rather than "lmerTest::lmer")
## Monte Carlo simulation (quasi-Bayesian approximation)
## (bootstrap method is not applicable to "lmer" models)
## Hypothesis: Crips -> Sweetness -> Preference (for carrots)
data = lmerTest::carrots # long-format data
data = na.omit(data) # omit missing values
lmm.m = lme4::lmer(Sweetness ~ Crisp + Gender + Age + (1 | Consumer), data=data)
lmm.y = lme4::lmer(Preference ~ Sweetness + Crisp + Gender + Age + (1 | Consumer), data=data)
set.seed(123) # set a random seed for reproduction
med.lmm = mediate(lmm.m, lmm.y,
treat="Crisp", mediator="Sweetness",
sims=1000)
med_summary(med.lmm)
}