Multi-factor ANOVA (between-subjects, within-subjects, and mixed designs), with and without covariates (ANCOVA).
This function is based on and extends afex::aov_ez()
.
You only need to specify the data, dependent variable(s), and factors
(between-subjects and/or within-subjects).
Almost all results you need will be displayed together,
including effect sizes (partial \(\eta^2\)) and their confidence intervals (CIs).
90% CIs for partial \(\eta^2\) (two-sided) are reported, following Steiger (2004).
In addition to partial \(\eta^2\), it also reports generalized \(\eta^2\), following Olejnik & Algina (2003).
How to prepare your data and specify the arguments of MANOVA
?
Wide-format data (one person in one row, and repeated measures in multiple columns):
- Betweem-subjects design
MANOVA(data=, dv=, between=, ...)
- Within-subjects design
MANOVA(data=, dvs=, dvs.pattern=, within=, ...)
- Mixed design
MANOVA(data=, dvs=, dvs.pattern=, between=, within=, ...)
Long-format data (one person in multiple rows, and repeated measures in one column):
- Betweem-subjects design
(not applicable)
- Within-subjects design
MANOVA(data=, subID=, dv=, within=, ...)
- Mixed design
MANOVA(data=, subID=, dv=, between=, within=, ...)
Usage
MANOVA(
data,
subID = NULL,
dv = NULL,
dvs = NULL,
dvs.pattern = NULL,
between = NULL,
within = NULL,
covariate = NULL,
ss.type = "III",
sph.correction = "none",
aov.include = FALSE,
digits = 3,
file = NULL
)
Arguments
- data
Data frame. Both wide-format and long-format are supported.
- subID
Subject ID (the column name). Only necessary for long-format data.
- dv
Dependent variable.
For wide-format data,
dv
only can be used for between-subjects designs. For within-subjects and mixed designs, please usedvs
anddvs.pattern
.For long-format data,
dv
is the outcome variable.
- dvs
Repeated measures. Only for wide-format data (within-subjects or mixed designs).
Can be:
"start:stop"
to specify the range of variables (sensitive to the order of variables):e.g.,
"A1B1:A2B3"
is matched to all variables in the data between"A1B1"
and"A2B3"
a character vector to directly specify variables (insensitive to the order of variables):
e.g.,
c("Cond1", "Cond2", "Cond3")
orcc("Cond1, Cond2, Cond3")
See
cc
for its usage.
- dvs.pattern
If you use
dvs
, you should also specify the pattern of variable names using regular expression.Examples:
"Cond(.)"
extracts levels from"Cond1", "Cond2", "Cond3", ...
You may rename the factor using thewithin
argument (e.g.,within="Condition"
)"X(..)Y(..)"
extracts levels from"X01Y01", "X02Y02", "XaaYbc", ...
"X(.+)Y(.+)"
extracts levels from"X1Y1", "XaYb", "XaY002", ...
Tips on regular expression:
"(.)"
extracts any single character (number, letter, and other symbols)"(.+)"
extracts >= 1 character(s)"(.*)"
extracts >= 0 character(s)"([0-9])"
extracts any single number"([a-z])"
extracts any single letterMore information: Link 1 (in English) and Link 2 (in Chinese)
- between
Between-subjects factor(s). Multiple variables should be included in a character vector
c()
.- within
Within-subjects factor(s). Multiple variables should be included in a character vector
c()
.- covariate
Covariates. Multiple variables should be included in a character vector
c()
.- ss.type
Type of sums of squares (SS) for ANOVA. Defaults to
"III"
. Possible values are"II"
,"III"
,2
, or3
.- sph.correction
[Only for repeated measures with >= 3 levels]
Sphericity correction method for adjusting the degrees of freedom (df) when the sphericity assumption is violated. Defaults to
"none"
. If Mauchly's test of sphericity is significant, you may set it to"GG"
(Greenhouse-Geisser) or"HF"
(Huynh-Feldt).- aov.include
Include the
aov
object in the returned object? Defaults toFALSE
, as suggested byafex::aov_ez()
(please see theinclude_aov
argument in this help page, which provides a detailed explanation). IfTRUE
, you should also specifymodel.type="univariate"
inEMMEANS
.- digits
Number of decimal places of output. Defaults to
3
.- file
File name of MS Word (
.doc
).
Value
A result object (list) returned by
afex::aov_ez()
,
along with several other elements:
between
, within
,
data.wide
, data.long
.
Details
If observations are not uniquely identified in user-defined long-format data,
the function takes averages across those multiple observations for each case.
In technical details, it specifies fun_aggregate=mean
in afex::aov_ez()
and values_fn=mean
in tidyr::pivot_wider()
.
Interaction Plot
You can save the returned object and use the emmeans::emmip()
function
to create an interaction plot (based on the fitted model and a formula specification).
For usage, please see the help page of emmeans::emmip()
.
It returns an object of class ggplot
, which can be easily modified and saved using ggplot2
syntax.
References
Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: Measures of effect size for some common research designs. Psychological Methods, 8(4), 434--447.
Steiger, J. H. (2004). Beyond the F test: Effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psychological Methods, 9(2), 164--182.
Examples
#### Between-Subjects Design ####
# \donttest{
between.1
#> A SCORE
#> 1 1 3
#> 2 1 6
#> 3 1 4
#> 4 1 3
#> 5 1 5
#> 6 1 7
#> 7 1 5
#> 8 1 2
#> 9 2 4
#> 10 2 6
#> 11 2 4
#> 12 2 2
#> 13 2 4
#> 14 2 5
#> 15 2 3
#> 16 2 3
#> 17 3 8
#> 18 3 9
#> 19 3 8
#> 20 3 7
#> 21 3 5
#> 22 3 6
#> 23 3 7
#> 24 3 6
#> 25 4 9
#> 26 4 8
#> 27 4 8
#> 28 4 7
#> 29 4 12
#> 30 4 13
#> 31 4 12
#> 32 4 11
MANOVA(between.1, dv="SCORE", between="A")
#>
#> ====== ANOVA (Between-Subjects Design) ======
#>
#> Descriptives:
#> ─────────────────────
#> "A" Mean S.D. n
#> ─────────────────────
#> A1 4.375 (1.685) 8
#> A2 3.875 (1.246) 8
#> A3 7.000 (1.309) 8
#> A4 10.000 (2.268) 8
#> ─────────────────────
#> Total sample size: N = 32
#>
#> ANOVA Table:
#> Dependent variable(s): SCORE
#> Between-subjects factor(s): A
#> Within-subjects factor(s): –
#> Covariate(s): –
#> ─────────────────────────────────────────────────────────────────
#> MS MSE df1 df2 F p η²p [90% CI of η²p] η²G
#> ─────────────────────────────────────────────────────────────────
#> A 63.375 2.813 3 28 22.533 <.001 *** .707 [.526, .798] .707
#> ─────────────────────────────────────────────────────────────────
#> MSE = mean square error (the residual variance of the linear model)
#> η²p = partial eta-squared = SS / (SS + SSE) = F * df1 / (F * df1 + df2)
#> ω²p = partial omega-squared = (F - 1) * df1 / (F * df1 + df2 + 1)
#> η²G = generalized eta-squared (see Olejnik & Algina, 2003)
#> Cohen’s f² = η²p / (1 - η²p)
#>
#> Levene’s Test for Homogeneity of Variance:
#> ───────────────────────────────────────
#> Levene’s F df1 df2 p
#> ───────────────────────────────────────
#> DV: SCORE 3.235 3 28 .037 *
#> ───────────────────────────────────────
#>
between.2
#> A B SCORE
#> 1 1 1 3
#> 2 1 1 6
#> 3 1 1 4
#> 4 1 1 3
#> 5 1 2 4
#> 6 1 2 6
#> 7 1 2 4
#> 8 1 2 2
#> 9 1 3 5
#> 10 1 3 7
#> 11 1 3 5
#> 12 1 3 2
#> 13 2 1 4
#> 14 2 1 5
#> 15 2 1 3
#> 16 2 1 3
#> 17 2 2 8
#> 18 2 2 9
#> 19 2 2 8
#> 20 2 2 7
#> 21 2 3 12
#> 22 2 3 13
#> 23 2 3 12
#> 24 2 3 11
MANOVA(between.2, dv="SCORE", between=c("A", "B"))
#>
#> ====== ANOVA (Between-Subjects Design) ======
#>
#> Descriptives:
#> ─────────────────────────
#> "A" "B" Mean S.D. n
#> ─────────────────────────
#> A1 B1 4.000 (1.414) 4
#> A1 B2 4.000 (1.633) 4
#> A1 B3 4.750 (2.062) 4
#> A2 B1 3.750 (0.957) 4
#> A2 B2 8.000 (0.816) 4
#> A2 B3 12.000 (0.816) 4
#> ─────────────────────────
#> Total sample size: N = 24
#>
#> ANOVA Table:
#> Dependent variable(s): SCORE
#> Between-subjects factor(s): A, B
#> Within-subjects factor(s): –
#> Covariate(s): –
#> ─────────────────────────────────────────────────────────────────────
#> MS MSE df1 df2 F p η²p [90% CI of η²p] η²G
#> ─────────────────────────────────────────────────────────────────────
#> A 80.667 1.861 1 18 43.343 <.001 *** .707 [.482, .817] .707
#> B 40.542 1.861 2 18 21.784 <.001 *** .708 [.470, .815] .708
#> A * B 28.292 1.861 2 18 15.201 <.001 *** .628 [.347, .763] .628
#> ─────────────────────────────────────────────────────────────────────
#> MSE = mean square error (the residual variance of the linear model)
#> η²p = partial eta-squared = SS / (SS + SSE) = F * df1 / (F * df1 + df2)
#> ω²p = partial omega-squared = (F - 1) * df1 / (F * df1 + df2 + 1)
#> η²G = generalized eta-squared (see Olejnik & Algina, 2003)
#> Cohen’s f² = η²p / (1 - η²p)
#>
#> Levene’s Test for Homogeneity of Variance:
#> ───────────────────────────────────────
#> Levene’s F df1 df2 p
#> ───────────────────────────────────────
#> DV: SCORE 0.605 5 18 .697
#> ───────────────────────────────────────
#>
between.3
#> A B C SCORE
#> 1 1 1 1 3
#> 2 1 1 1 6
#> 3 1 1 1 4
#> 4 1 1 1 3
#> 5 1 1 2 5
#> 6 1 1 2 7
#> 7 1 1 2 5
#> 8 1 1 2 2
#> 9 1 2 1 4
#> 10 1 2 1 6
#> 11 1 2 1 4
#> 12 1 2 1 2
#> 13 1 2 2 4
#> 14 1 2 2 5
#> 15 1 2 2 3
#> 16 1 2 2 3
#> 17 2 1 1 8
#> 18 2 1 1 9
#> 19 2 1 1 8
#> 20 2 1 1 7
#> 21 2 1 2 5
#> 22 2 1 2 6
#> 23 2 1 2 7
#> 24 2 1 2 6
#> 25 2 2 1 9
#> 26 2 2 1 8
#> 27 2 2 1 8
#> 28 2 2 1 7
#> 29 2 2 2 12
#> 30 2 2 2 13
#> 31 2 2 2 12
#> 32 2 2 2 11
MANOVA(between.3, dv="SCORE", between=c("A", "B", "C"))
#>
#> ====== ANOVA (Between-Subjects Design) ======
#>
#> Descriptives:
#> ─────────────────────────────
#> "A" "B" "C" Mean S.D. n
#> ─────────────────────────────
#> A1 B1 C1 4.000 (1.414) 4
#> A1 B1 C2 4.750 (2.062) 4
#> A1 B2 C1 4.000 (1.633) 4
#> A1 B2 C2 3.750 (0.957) 4
#> A2 B1 C1 8.000 (0.816) 4
#> A2 B1 C2 6.000 (0.816) 4
#> A2 B2 C1 8.000 (0.816) 4
#> A2 B2 C2 12.000 (0.816) 4
#> ─────────────────────────────
#> Total sample size: N = 32
#>
#> ANOVA Table:
#> Dependent variable(s): SCORE
#> Between-subjects factor(s): A, B, C
#> Within-subjects factor(s): –
#> Covariate(s): –
#> ──────────────────────────────────────────────────────────────────────────
#> MS MSE df1 df2 F p η²p [90% CI of η²p] η²G
#> ──────────────────────────────────────────────────────────────────────────
#> A 153.125 1.563 1 24 98.000 <.001 *** .803 [.670, .870] .803
#> B 12.500 1.563 1 24 8.000 .009 ** .250 [.042, .466] .250
#> C 3.125 1.563 1 24 2.000 .170 .077 [.000, .283] .077
#> A * B 24.500 1.563 1 24 15.680 <.001 *** .395 [.147, .585] .395
#> A * C 1.125 1.563 1 24 0.720 .405 .029 [.000, .206] .029
#> B * C 12.500 1.563 1 24 8.000 .009 ** .250 [.042, .466] .250
#> A * B * C 24.500 1.563 1 24 15.680 <.001 *** .395 [.147, .585] .395
#> ──────────────────────────────────────────────────────────────────────────
#> MSE = mean square error (the residual variance of the linear model)
#> η²p = partial eta-squared = SS / (SS + SSE) = F * df1 / (F * df1 + df2)
#> ω²p = partial omega-squared = (F - 1) * df1 / (F * df1 + df2 + 1)
#> η²G = generalized eta-squared (see Olejnik & Algina, 2003)
#> Cohen’s f² = η²p / (1 - η²p)
#>
#> Levene’s Test for Homogeneity of Variance:
#> ───────────────────────────────────────
#> Levene’s F df1 df2 p
#> ───────────────────────────────────────
#> DV: SCORE 0.668 7 24 .697
#> ───────────────────────────────────────
#>
## How to create an interaction plot using `emmeans::emmip()`?
## See help page for its usage: ?emmeans::emmip()
m = MANOVA(between.2, dv="SCORE", between=c("A", "B"))
#>
#> ====== ANOVA (Between-Subjects Design) ======
#>
#> Descriptives:
#> ─────────────────────────
#> "A" "B" Mean S.D. n
#> ─────────────────────────
#> A1 B1 4.000 (1.414) 4
#> A1 B2 4.000 (1.633) 4
#> A1 B3 4.750 (2.062) 4
#> A2 B1 3.750 (0.957) 4
#> A2 B2 8.000 (0.816) 4
#> A2 B3 12.000 (0.816) 4
#> ─────────────────────────
#> Total sample size: N = 24
#>
#> ANOVA Table:
#> Dependent variable(s): SCORE
#> Between-subjects factor(s): A, B
#> Within-subjects factor(s): –
#> Covariate(s): –
#> ─────────────────────────────────────────────────────────────────────
#> MS MSE df1 df2 F p η²p [90% CI of η²p] η²G
#> ─────────────────────────────────────────────────────────────────────
#> A 80.667 1.861 1 18 43.343 <.001 *** .707 [.482, .817] .707
#> B 40.542 1.861 2 18 21.784 <.001 *** .708 [.470, .815] .708
#> A * B 28.292 1.861 2 18 15.201 <.001 *** .628 [.347, .763] .628
#> ─────────────────────────────────────────────────────────────────────
#> MSE = mean square error (the residual variance of the linear model)
#> η²p = partial eta-squared = SS / (SS + SSE) = F * df1 / (F * df1 + df2)
#> ω²p = partial omega-squared = (F - 1) * df1 / (F * df1 + df2 + 1)
#> η²G = generalized eta-squared (see Olejnik & Algina, 2003)
#> Cohen’s f² = η²p / (1 - η²p)
#>
#> Levene’s Test for Homogeneity of Variance:
#> ───────────────────────────────────────
#> Levene’s F df1 df2 p
#> ───────────────────────────────────────
#> DV: SCORE 0.605 5 18 .697
#> ───────────────────────────────────────
#>
emmip(m, ~ A | B, CIs=TRUE)
emmip(m, ~ B | A, CIs=TRUE)
emmip(m, B ~ A, CIs=TRUE)
emmip(m, A ~ B, CIs=TRUE)
#### Within-Subjects Design ####
within.1
#> ID A1 A2 A3 A4
#> 1 S1 3 4 8 9
#> 2 S2 6 6 9 8
#> 3 S3 4 4 8 8
#> 4 S4 3 2 7 7
#> 5 S5 5 4 5 12
#> 6 S6 7 5 6 13
#> 7 S7 5 3 7 12
#> 8 S8 2 3 6 11
MANOVA(within.1, dvs="A1:A4", dvs.pattern="A(.)",
within="A")
#>
#> Note:
#> dvs="A1:A4" is matched to variables:
#> A1, A2, A3, A4
#>
#> ====== ANOVA (Within-Subjects Design) ======
#>
#> Descriptives:
#> ─────────────────────
#> "A" Mean S.D. n
#> ─────────────────────
#> A1 4.375 (1.685) 8
#> A2 3.875 (1.246) 8
#> A3 7.000 (1.309) 8
#> A4 10.000 (2.268) 8
#> ─────────────────────
#> Total sample size: N = 8
#>
#> ANOVA Table:
#> Dependent variable(s): A1, A2, A3, A4
#> Between-subjects factor(s): –
#> Within-subjects factor(s): A
#> Covariate(s): –
#> ─────────────────────────────────────────────────────────────────
#> MS MSE df1 df2 F p η²p [90% CI of η²p] η²G
#> ─────────────────────────────────────────────────────────────────
#> A 63.375 2.518 3 21 25.170 <.001 *** .782 [.609, .858] .707
#> ─────────────────────────────────────────────────────────────────
#> MSE = mean square error (the residual variance of the linear model)
#> η²p = partial eta-squared = SS / (SS + SSE) = F * df1 / (F * df1 + df2)
#> ω²p = partial omega-squared = (F - 1) * df1 / (F * df1 + df2 + 1)
#> η²G = generalized eta-squared (see Olejnik & Algina, 2003)
#> Cohen’s f² = η²p / (1 - η²p)
#>
#> Levene’s Test for Homogeneity of Variance:
#> No between-subjects factors. No need to do the Levene’s test.
#>
#> Mauchly’s Test of Sphericity:
#> ────────────────────────
#> Mauchly's W p
#> ────────────────────────
#> A 0.1899 .095 .
#> ────────────────────────
#>
## the same:
MANOVA(within.1, dvs=c("A1", "A2", "A3", "A4"), dvs.pattern="A(.)",
within="MyFactor") # renamed the within-subjects factor
#>
#> ====== ANOVA (Within-Subjects Design) ======
#>
#> Descriptives:
#> ────────────────────────────
#> "MyFactor" Mean S.D. n
#> ────────────────────────────
#> MyFactor1 4.375 (1.685) 8
#> MyFactor2 3.875 (1.246) 8
#> MyFactor3 7.000 (1.309) 8
#> MyFactor4 10.000 (2.268) 8
#> ────────────────────────────
#> Total sample size: N = 8
#>
#> ANOVA Table:
#> Dependent variable(s): A1, A2, A3, A4
#> Between-subjects factor(s): –
#> Within-subjects factor(s): MyFactor
#> Covariate(s): –
#> ────────────────────────────────────────────────────────────────────────
#> MS MSE df1 df2 F p η²p [90% CI of η²p] η²G
#> ────────────────────────────────────────────────────────────────────────
#> MyFactor 63.375 2.518 3 21 25.170 <.001 *** .782 [.609, .858] .707
#> ────────────────────────────────────────────────────────────────────────
#> MSE = mean square error (the residual variance of the linear model)
#> η²p = partial eta-squared = SS / (SS + SSE) = F * df1 / (F * df1 + df2)
#> ω²p = partial omega-squared = (F - 1) * df1 / (F * df1 + df2 + 1)
#> η²G = generalized eta-squared (see Olejnik & Algina, 2003)
#> Cohen’s f² = η²p / (1 - η²p)
#>
#> Levene’s Test for Homogeneity of Variance:
#> No between-subjects factors. No need to do the Levene’s test.
#>
#> Mauchly’s Test of Sphericity:
#> ───────────────────────────────
#> Mauchly's W p
#> ───────────────────────────────
#> MyFactor 0.1899 .095 .
#> ───────────────────────────────
#>
within.2
#> ID A1B1 A1B2 A1B3 A2B1 A2B2 A2B3
#> 1 S1 3 4 5 4 8 12
#> 2 S2 6 6 7 5 9 13
#> 3 S3 4 4 5 3 8 12
#> 4 S4 3 2 2 3 7 11
MANOVA(within.2, dvs="A1B1:A2B3", dvs.pattern="A(.)B(.)",
within=c("A", "B"))
#>
#> Note:
#> dvs="A1B1:A2B3" is matched to variables:
#> A1B1, A1B2, A1B3, A2B1, A2B2, A2B3
#>
#> ====== ANOVA (Within-Subjects Design) ======
#>
#> Descriptives:
#> ─────────────────────────
#> "A" "B" Mean S.D. n
#> ─────────────────────────
#> A1 B1 4.000 (1.414) 4
#> A1 B2 4.000 (1.633) 4
#> A1 B3 4.750 (2.062) 4
#> A2 B1 3.750 (0.957) 4
#> A2 B2 8.000 (0.816) 4
#> A2 B3 12.000 (0.816) 4
#> ─────────────────────────
#> Total sample size: N = 4
#>
#> ANOVA Table:
#> Dependent variable(s): A1B1, A1B2, A1B3, A2B1, A2B2, A2B3
#> Between-subjects factor(s): –
#> Within-subjects factor(s): A, B
#> Covariate(s): –
#> ──────────────────────────────────────────────────────────────────────
#> MS MSE df1 df2 F p η²p [90% CI of η²p] η²G
#> ──────────────────────────────────────────────────────────────────────
#> A 80.667 1.111 1 3 72.600 .003 ** .960 [.699, .985] .707
#> B 40.542 0.264 2 6 153.632 <.001 *** .981 [.930, .991] .708
#> A * B 28.292 0.236 2 6 119.824 <.001 *** .976 [.911, .988] .628
#> ──────────────────────────────────────────────────────────────────────
#> MSE = mean square error (the residual variance of the linear model)
#> η²p = partial eta-squared = SS / (SS + SSE) = F * df1 / (F * df1 + df2)
#> ω²p = partial omega-squared = (F - 1) * df1 / (F * df1 + df2 + 1)
#> η²G = generalized eta-squared (see Olejnik & Algina, 2003)
#> Cohen’s f² = η²p / (1 - η²p)
#>
#> Levene’s Test for Homogeneity of Variance:
#> No between-subjects factors. No need to do the Levene’s test.
#>
#> Mauchly’s Test of Sphericity:
#> ────────────────────────────
#> Mauchly's W p
#> ────────────────────────────
#> B 0.0665 .066 .
#> A * B 0.2491 .249
#> ────────────────────────────
#>
within.3
#> ID A1B1C1 A1B1C2 A1B2C1 A1B2C2 A2B1C1 A2B1C2 A2B2C1 A2B2C2
#> 1 S1 3 5 4 4 8 5 9 12
#> 2 S2 6 7 6 5 9 6 8 13
#> 3 S3 4 5 4 3 8 7 8 12
#> 4 S4 3 2 2 3 7 6 7 11
MANOVA(within.3, dvs="A1B1C1:A2B2C2", dvs.pattern="A(.)B(.)C(.)",
within=c("A", "B", "C"))
#>
#> Note:
#> dvs="A1B1C1:A2B2C2" is matched to variables:
#> A1B1C1, A1B1C2, A1B2C1, A1B2C2, A2B1C1, A2B1C2, A2B2C1, A2B2C2
#>
#> ====== ANOVA (Within-Subjects Design) ======
#>
#> Descriptives:
#> ─────────────────────────────
#> "A" "B" "C" Mean S.D. n
#> ─────────────────────────────
#> A1 B1 C1 4.000 (1.414) 4
#> A1 B1 C2 4.750 (2.062) 4
#> A1 B2 C1 4.000 (1.633) 4
#> A1 B2 C2 3.750 (0.957) 4
#> A2 B1 C1 8.000 (0.816) 4
#> A2 B1 C2 6.000 (0.816) 4
#> A2 B2 C1 8.000 (0.816) 4
#> A2 B2 C2 12.000 (0.816) 4
#> ─────────────────────────────
#> Total sample size: N = 4
#>
#> ANOVA Table:
#> Dependent variable(s): A1B1C1, A1B1C2, A1B2C1, A1B2C2, A2B1C1, A2B1C2, A2B2C1, A2B2C2
#> Between-subjects factor(s): –
#> Within-subjects factor(s): A, B, C
#> Covariate(s): –
#> ──────────────────────────────────────────────────────────────────────────
#> MS MSE df1 df2 F p η²p [90% CI of η²p] η²G
#> ──────────────────────────────────────────────────────────────────────────
#> A 153.125 1.875 1 3 81.667 .003 ** .965 [.727, .986] .803
#> B 12.500 0.583 1 3 21.429 .019 * .877 [.279, .954] .250
#> C 3.125 0.042 1 3 75.000 .003 ** .962 [.707, .985] .077
#> A * B 24.500 0.250 1 3 98.000 .002 ** .970 [.768, .989] .395
#> A * C 1.125 0.708 1 3 1.588 .297 .346 [.000, .751] .029
#> B * C 12.500 0.417 1 3 30.000 .012 * .909 [.411, .965] .250
#> A * B * C 24.500 1.083 1 3 22.615 .018 * .883 [.300, .956] .395
#> ──────────────────────────────────────────────────────────────────────────
#> MSE = mean square error (the residual variance of the linear model)
#> η²p = partial eta-squared = SS / (SS + SSE) = F * df1 / (F * df1 + df2)
#> ω²p = partial omega-squared = (F - 1) * df1 / (F * df1 + df2 + 1)
#> η²G = generalized eta-squared (see Olejnik & Algina, 2003)
#> Cohen’s f² = η²p / (1 - η²p)
#>
#> Levene’s Test for Homogeneity of Variance:
#> No between-subjects factors. No need to do the Levene’s test.
#>
#> Mauchly’s Test of Sphericity:
#> The repeated measures have only two levels. The assumption of sphericity is always met.
#>
#### Mixed Design ####
mixed.2_1b1w
#> A B1 B2 B3
#> 1 1 3 4 5
#> 2 1 6 6 7
#> 3 1 4 4 5
#> 4 1 3 2 2
#> 5 2 4 8 12
#> 6 2 5 9 13
#> 7 2 3 8 12
#> 8 2 3 7 11
MANOVA(mixed.2_1b1w, dvs="B1:B3", dvs.pattern="B(.)",
between="A", within="B")
#>
#> Note:
#> dvs="B1:B3" is matched to variables:
#> B1, B2, B3
#>
#> ====== ANOVA (Mixed Design) ======
#>
#> Descriptives:
#> ─────────────────────────
#> "A" "B" Mean S.D. n
#> ─────────────────────────
#> A1 B1 4.000 (1.414) 4
#> A1 B2 4.000 (1.633) 4
#> A1 B3 4.750 (2.062) 4
#> A2 B1 3.750 (0.957) 4
#> A2 B2 8.000 (0.816) 4
#> A2 B3 12.000 (0.816) 4
#> ─────────────────────────
#> Total sample size: N = 8
#>
#> ANOVA Table:
#> Dependent variable(s): B1, B2, B3
#> Between-subjects factor(s): A
#> Within-subjects factor(s): B
#> Covariate(s): –
#> ──────────────────────────────────────────────────────────────────────
#> MS MSE df1 df2 F p η²p [90% CI of η²p] η²G
#> ──────────────────────────────────────────────────────────────────────
#> A 80.667 5.083 1 6 15.869 .007 ** .726 [.248, .871] .707
#> B 40.542 0.250 2 12 162.167 <.001 *** .964 [.918, .980] .708
#> A * B 28.292 0.250 2 12 113.167 <.001 *** .950 [.885, .971] .628
#> ──────────────────────────────────────────────────────────────────────
#> MSE = mean square error (the residual variance of the linear model)
#> η²p = partial eta-squared = SS / (SS + SSE) = F * df1 / (F * df1 + df2)
#> ω²p = partial omega-squared = (F - 1) * df1 / (F * df1 + df2 + 1)
#> η²G = generalized eta-squared (see Olejnik & Algina, 2003)
#> Cohen’s f² = η²p / (1 - η²p)
#>
#> Levene’s Test for Homogeneity of Variance:
#> ────────────────────────────────────
#> Levene’s F df1 df2 p
#> ────────────────────────────────────
#> DV: B1 0.300 1 6 .604
#> DV: B2 0.600 1 6 .468
#> DV: B3 1.485 1 6 .269
#> ────────────────────────────────────
#>
#> Mauchly’s Test of Sphericity:
#> ────────────────────────────
#> Mauchly's W p
#> ────────────────────────────
#> B 0.1574 .010 **
#> A * B 0.1574 .010 **
#> ────────────────────────────
#> The sphericity assumption is violated.
#> You may specify: sph.correction="GG" (or ="HF")
#>
MANOVA(mixed.2_1b1w, dvs="B1:B3", dvs.pattern="B(.)",
between="A", within="B", sph.correction="GG")
#>
#> Note:
#> dvs="B1:B3" is matched to variables:
#> B1, B2, B3
#>
#> ====== ANOVA (Mixed Design) ======
#>
#> Descriptives:
#> ─────────────────────────
#> "A" "B" Mean S.D. n
#> ─────────────────────────
#> A1 B1 4.000 (1.414) 4
#> A1 B2 4.000 (1.633) 4
#> A1 B3 4.750 (2.062) 4
#> A2 B1 3.750 (0.957) 4
#> A2 B2 8.000 (0.816) 4
#> A2 B3 12.000 (0.816) 4
#> ─────────────────────────
#> Total sample size: N = 8
#>
#> ANOVA Table:
#> Dependent variable(s): B1, B2, B3
#> Between-subjects factor(s): A
#> Within-subjects factor(s): B
#> Covariate(s): –
#> ──────────────────────────────────────────────────────────────────────────
#> MS MSE df1 df2 F p η²p [90% CI of η²p] η²G
#> ──────────────────────────────────────────────────────────────────────────
#> A 80.667 5.083 1.000 6.000 15.869 .007 ** .726 [.248, .871] .707
#> B 74.702 0.461 1.085 6.513 162.167 <.001 *** .964 [.880, .983] .708
#> A * B 52.130 0.461 1.085 6.513 113.167 <.001 *** .950 [.833, .976] .628
#> ──────────────────────────────────────────────────────────────────────────
#> Sphericity correction method: GG (Greenhouse-Geisser)
#> MSE = mean square error (the residual variance of the linear model)
#> η²p = partial eta-squared = SS / (SS + SSE) = F * df1 / (F * df1 + df2)
#> ω²p = partial omega-squared = (F - 1) * df1 / (F * df1 + df2 + 1)
#> η²G = generalized eta-squared (see Olejnik & Algina, 2003)
#> Cohen’s f² = η²p / (1 - η²p)
#>
#> Levene’s Test for Homogeneity of Variance:
#> ────────────────────────────────────
#> Levene’s F df1 df2 p
#> ────────────────────────────────────
#> DV: B1 0.300 1 6 .604
#> DV: B2 0.600 1 6 .468
#> DV: B3 1.485 1 6 .269
#> ────────────────────────────────────
#>
#> Mauchly’s Test of Sphericity:
#> ────────────────────────────
#> Mauchly's W p
#> ────────────────────────────
#> B 0.1574 .010 **
#> A * B 0.1574 .010 **
#> ────────────────────────────
#>
mixed.3_1b2w
#> A B1C1 B1C2 B2C1 B2C2
#> 1 1 3 5 4 4
#> 2 1 6 7 6 5
#> 3 1 4 5 4 3
#> 4 1 3 2 2 3
#> 5 2 8 5 9 12
#> 6 2 9 6 8 13
#> 7 2 8 7 8 12
#> 8 2 7 6 7 11
MANOVA(mixed.3_1b2w, dvs="B1C1:B2C2", dvs.pattern="B(.)C(.)",
between="A", within=c("B", "C"))
#>
#> Note:
#> dvs="B1C1:B2C2" is matched to variables:
#> B1C1, B1C2, B2C1, B2C2
#>
#> ====== ANOVA (Mixed Design) ======
#>
#> Descriptives:
#> ─────────────────────────────
#> "A" "B" "C" Mean S.D. n
#> ─────────────────────────────
#> A1 B1 C1 4.000 (1.414) 4
#> A1 B1 C2 4.750 (2.062) 4
#> A1 B2 C1 4.000 (1.633) 4
#> A1 B2 C2 3.750 (0.957) 4
#> A2 B1 C1 8.000 (0.816) 4
#> A2 B1 C2 6.000 (0.816) 4
#> A2 B2 C1 8.000 (0.816) 4
#> A2 B2 C2 12.000 (0.816) 4
#> ─────────────────────────────
#> Total sample size: N = 8
#>
#> ANOVA Table:
#> Dependent variable(s): B1C1, B1C2, B2C1, B2C2
#> Between-subjects factor(s): A
#> Within-subjects factor(s): B, C
#> Covariate(s): –
#> ──────────────────────────────────────────────────────────────────────────
#> MS MSE df1 df2 F p η²p [90% CI of η²p] η²G
#> ──────────────────────────────────────────────────────────────────────────
#> A 153.125 4.708 1 6 32.522 .001 ** .844 [.503, .926] .803
#> B 12.500 0.417 1 6 30.000 .002 ** .833 [.475, .921] .250
#> A * B 24.500 0.417 1 6 58.800 <.001 *** .907 [.684, .956] .395
#> C 3.125 0.375 1 6 8.333 .028 * .581 [.064, .801] .077
#> A * C 1.125 0.375 1 6 3.000 .134 .333 [.000, .671] .029
#> B * C 12.500 0.750 1 6 16.667 .006 ** .735 [.264, .875] .250
#> A * B * C 24.500 0.750 1 6 32.667 .001 ** .845 [.505, .927] .395
#> ──────────────────────────────────────────────────────────────────────────
#> MSE = mean square error (the residual variance of the linear model)
#> η²p = partial eta-squared = SS / (SS + SSE) = F * df1 / (F * df1 + df2)
#> ω²p = partial omega-squared = (F - 1) * df1 / (F * df1 + df2 + 1)
#> η²G = generalized eta-squared (see Olejnik & Algina, 2003)
#> Cohen’s f² = η²p / (1 - η²p)
#>
#> Levene’s Test for Homogeneity of Variance:
#> ──────────────────────────────────────
#> Levene’s F df1 df2 p
#> ──────────────────────────────────────
#> DV: B1C1 1.000 1 6 .356
#> DV: B1C2 1.485 1 6 .269
#> DV: B2C1 0.600 1 6 .468
#> DV: B2C2 0.500 1 6 .506
#> ──────────────────────────────────────
#>
#> Mauchly’s Test of Sphericity:
#> The repeated measures have only two levels. The assumption of sphericity is always met.
#>
mixed.3_2b1w
#> A C B1 B2
#> 1 1 1 3 4
#> 2 1 1 6 6
#> 3 1 1 4 4
#> 4 1 1 3 2
#> 5 1 2 5 4
#> 6 1 2 7 5
#> 7 1 2 5 3
#> 8 1 2 2 3
#> 9 2 1 8 9
#> 10 2 1 9 8
#> 11 2 1 8 8
#> 12 2 1 7 7
#> 13 2 2 5 12
#> 14 2 2 6 13
#> 15 2 2 7 12
#> 16 2 2 6 11
MANOVA(mixed.3_2b1w, dvs="B1:B2", dvs.pattern="B(.)",
between=c("A", "C"), within="B")
#>
#> Note:
#> dvs="B1:B2" is matched to variables:
#> B1, B2
#>
#> ====== ANOVA (Mixed Design) ======
#>
#> Descriptives:
#> ─────────────────────────────
#> "A" "C" "B" Mean S.D. n
#> ─────────────────────────────
#> A1 C1 B1 4.000 (1.414) 4
#> A1 C1 B2 4.000 (1.633) 4
#> A1 C2 B1 4.750 (2.062) 4
#> A1 C2 B2 3.750 (0.957) 4
#> A2 C1 B1 8.000 (0.816) 4
#> A2 C1 B2 8.000 (0.816) 4
#> A2 C2 B1 6.000 (0.816) 4
#> A2 C2 B2 12.000 (0.816) 4
#> ─────────────────────────────
#> Total sample size: N = 16
#>
#> ANOVA Table:
#> Dependent variable(s): B1, B2
#> Between-subjects factor(s): A, C
#> Within-subjects factor(s): B
#> Covariate(s): –
#> ──────────────────────────────────────────────────────────────────────────
#> MS MSE df1 df2 F p η²p [90% CI of η²p] η²G
#> ──────────────────────────────────────────────────────────────────────────
#> A 153.125 2.542 1 12 60.246 <.001 *** .834 [.639, .906] .803
#> C 3.125 2.542 1 12 1.230 .289 .093 [.000, .390] .077
#> A * C 1.125 2.542 1 12 0.443 .518 .036 [.000, .305] .029
#> B 12.500 0.583 1 12 21.429 <.001 *** .641 [.308, .795] .250
#> A * B 24.500 0.583 1 12 42.000 <.001 *** .778 [.532, .874] .395
#> C * B 12.500 0.583 1 12 21.429 <.001 *** .641 [.308, .795] .250
#> A * C * B 24.500 0.583 1 12 42.000 <.001 *** .778 [.532, .874] .395
#> ──────────────────────────────────────────────────────────────────────────
#> MSE = mean square error (the residual variance of the linear model)
#> η²p = partial eta-squared = SS / (SS + SSE) = F * df1 / (F * df1 + df2)
#> ω²p = partial omega-squared = (F - 1) * df1 / (F * df1 + df2 + 1)
#> η²G = generalized eta-squared (see Olejnik & Algina, 2003)
#> Cohen’s f² = η²p / (1 - η²p)
#>
#> Levene’s Test for Homogeneity of Variance:
#> ────────────────────────────────────
#> Levene’s F df1 df2 p
#> ────────────────────────────────────
#> DV: B1 0.946 3 12 .449
#> DV: B2 0.423 3 12 .740
#> ────────────────────────────────────
#>
#> Mauchly’s Test of Sphericity:
#> The repeated measures have only two levels. The assumption of sphericity is always met.
#>
#### Other Examples ####
data.new = mixed.3_1b2w
names(data.new) = c("Group", "Cond_01", "Cond_02", "Cond_03", "Cond_04")
MANOVA(data.new,
dvs="Cond_01:Cond_04",
dvs.pattern="Cond_(..)",
between="Group",
within="Condition") # rename the factor
#>
#> Note:
#> dvs="Cond_01:Cond_04" is matched to variables:
#> Cond_01, Cond_02, Cond_03, Cond_04
#>
#> ====== ANOVA (Mixed Design) ======
#>
#> Descriptives:
#> ─────────────────────────────────────
#> "Group" "Condition" Mean S.D. n
#> ─────────────────────────────────────
#> Group1 Condition01 4.000 (1.414) 4
#> Group1 Condition02 4.750 (2.062) 4
#> Group1 Condition03 4.000 (1.633) 4
#> Group1 Condition04 3.750 (0.957) 4
#> Group2 Condition01 8.000 (0.816) 4
#> Group2 Condition02 6.000 (0.816) 4
#> Group2 Condition03 8.000 (0.816) 4
#> Group2 Condition04 12.000 (0.816) 4
#> ─────────────────────────────────────
#> Total sample size: N = 8
#>
#> ANOVA Table:
#> Dependent variable(s): Cond_01, Cond_02, Cond_03, Cond_04
#> Between-subjects factor(s): Group
#> Within-subjects factor(s): Condition
#> Covariate(s): –
#> ──────────────────────────────────────────────────────────────────────────────────
#> MS MSE df1 df2 F p η²p [90% CI of η²p] η²G
#> ──────────────────────────────────────────────────────────────────────────────────
#> Group 153.125 4.708 1 6 32.522 .001 ** .844 [.503, .926] .803
#> Condition 9.375 0.514 3 18 18.243 <.001 *** .753 [.533, .843] .429
#> Group * Condition 16.708 0.514 3 18 32.514 <.001 *** .844 [.702, .902] .572
#> ──────────────────────────────────────────────────────────────────────────────────
#> MSE = mean square error (the residual variance of the linear model)
#> η²p = partial eta-squared = SS / (SS + SSE) = F * df1 / (F * df1 + df2)
#> ω²p = partial omega-squared = (F - 1) * df1 / (F * df1 + df2 + 1)
#> η²G = generalized eta-squared (see Olejnik & Algina, 2003)
#> Cohen’s f² = η²p / (1 - η²p)
#>
#> Levene’s Test for Homogeneity of Variance:
#> ─────────────────────────────────────────
#> Levene’s F df1 df2 p
#> ─────────────────────────────────────────
#> DV: Cond_01 1.000 1 6 .356
#> DV: Cond_02 1.485 1 6 .269
#> DV: Cond_03 0.600 1 6 .468
#> DV: Cond_04 0.500 1 6 .506
#> ─────────────────────────────────────────
#>
#> Mauchly’s Test of Sphericity:
#> ────────────────────────────────────────
#> Mauchly's W p
#> ────────────────────────────────────────
#> Condition 0.5544 .738
#> Group * Condition 0.5544 .738
#> ────────────────────────────────────────
#>
# ?afex::obk.long
MANOVA(afex::obk.long,
subID="id",
dv="value",
between=c("treatment", "gender"),
within=c("phase", "hour"),
cov="age",
sph.correction="GG")
#>
#> * Data are aggregated to mean (across items/trials)
#> if there are >=2 observations per subject and cell.
#> You may use Linear Mixed Model to analyze the data,
#> e.g., with subjects and items as level-2 clusters.
#>
#> ====== ANOVA (Mixed Design) ======
#>
#> Descriptives:
#> ─────────────────────────────────────────────────────
#> "treatment" "gender" "phase" "hour" Mean S.D. n
#> ─────────────────────────────────────────────────────
#> control F fup hour1 4.000 (0.000) 2
#> control F fup hour2 3.500 (0.707) 2
#> control F fup hour3 5.500 (0.707) 2
#> control F fup hour4 3.500 (0.707) 2
#> control F fup hour5 3.500 (0.707) 2
#> control F post hour1 4.000 (2.828) 2
#> control F post hour2 4.500 (3.536) 2
#> control F post hour3 5.500 (3.536) 2
#> control F post hour4 5.500 (0.707) 2
#> control F post hour5 3.000 (0.000) 2
#> control F pre hour1 4.000 (1.414) 2
#> control F pre hour2 4.000 (0.000) 2
#> control F pre hour3 6.500 (0.707) 2
#> control F pre hour4 4.500 (0.707) 2
#> control F pre hour5 3.500 (0.707) 2
#> control M fup hour1 4.333 (2.517) 3
#> control M fup hour2 4.667 (1.528) 3
#> control M fup hour3 5.667 (3.512) 3
#> control M fup hour4 5.000 (1.732) 3
#> control M fup hour5 3.667 (2.517) 3
#> control M post hour1 3.000 (1.000) 3
#> control M post hour2 3.000 (1.732) 3
#> control M post hour3 5.000 (2.000) 3
#> control M post hour4 4.333 (1.155) 3
#> control M post hour5 3.000 (1.000) 3
#> control M pre hour1 3.333 (2.082) 3
#> control M pre hour2 4.000 (2.000) 3
#> control M pre hour3 4.667 (0.577) 3
#> control M pre hour4 4.000 (2.646) 3
#> control M pre hour5 4.000 (3.000) 3
#> A F fup hour1 5.500 (0.707) 2
#> A F fup hour2 5.000 (1.414) 2
#> A F fup hour3 7.000 (0.000) 2
#> A F fup hour4 5.000 (0.000) 2
#> A F fup hour5 5.000 (1.414) 2
#> A F post hour1 3.000 (1.414) 2
#> A F post hour2 4.500 (0.707) 2
#> A F post hour3 7.000 (1.414) 2
#> A F post hour4 5.000 (1.414) 2
#> A F post hour5 3.000 (2.828) 2
#> A F pre hour1 2.500 (0.707) 2
#> A F pre hour2 3.000 (0.000) 2
#> A F pre hour3 4.500 (0.707) 2
#> A F pre hour4 4.500 (2.121) 2
#> A F pre hour5 3.000 (1.414) 2
#> A M fup hour1 8.500 (0.707) 2
#> A M fup hour2 9.500 (0.707) 2
#> A M fup hour3 11.000 (0.000) 2
#> A M fup hour4 9.000 (0.000) 2
#> A M fup hour5 7.000 (1.414) 2
#> A M post hour1 8.000 (1.414) 2
#> A M post hour2 8.000 (1.414) 2
#> A M post hour3 9.000 (1.414) 2
#> A M post hour4 9.000 (1.414) 2
#> A M post hour5 8.500 (0.707) 2
#> A M pre hour1 6.000 (1.414) 2
#> A M pre hour2 6.500 (2.121) 2
#> A M pre hour3 6.500 (0.707) 2
#> A M pre hour4 6.500 (3.536) 2
#> A M pre hour5 7.000 (2.828) 2
#> B F fup hour1 6.750 (0.500) 4
#> B F fup hour2 7.250 (0.500) 4
#> B F fup hour3 8.500 (1.000) 4
#> B F fup hour4 7.500 (1.915) 4
#> B F fup hour5 6.250 (2.217) 4
#> B F post hour1 5.500 (1.291) 4
#> B F post hour2 6.250 (0.500) 4
#> B F post hour3 7.000 (0.816) 4
#> B F post hour4 7.000 (1.826) 4
#> B F post hour5 5.500 (2.380) 4
#> B F pre hour1 3.250 (1.500) 4
#> B F pre hour2 3.500 (1.732) 4
#> B F pre hour3 4.750 (2.062) 4
#> B F pre hour4 4.500 (2.887) 4
#> B F pre hour5 4.000 (1.633) 4
#> B M fup hour1 7.000 (1.732) 3
#> B M fup hour2 7.000 (1.000) 3
#> B M fup hour3 9.000 (1.000) 3
#> B M fup hour4 7.000 (1.000) 3
#> B M fup hour5 6.667 (1.528) 3
#> B M post hour1 6.667 (2.082) 3
#> B M post hour2 7.000 (3.000) 3
#> B M post hour3 8.000 (2.646) 3
#> B M post hour4 7.333 (2.082) 3
#> B M post hour5 6.000 (2.000) 3
#> B M pre hour1 4.333 (1.528) 3
#> B M pre hour2 4.667 (2.082) 3
#> B M pre hour3 5.667 (2.082) 3
#> B M pre hour4 3.667 (2.082) 3
#> B M pre hour5 3.333 (0.577) 3
#> ─────────────────────────────────────────────────────
#> Total sample size: N = 16
#>
#> ANOVA Table:
#> Dependent variable(s): value
#> Between-subjects factor(s): treatment, gender
#> Within-subjects factor(s): phase, hour
#> Covariate(s): age
#> ───────────────────────────────────────────────────────────────────────────────────────────────────────
#> MS MSE df1 df2 F p η²p [90% CI of η²p] η²G
#> ───────────────────────────────────────────────────────────────────────────────────────────────────────
#> treatment 85.700 23.962 2.000 9.000 3.577 .072 . .443 [.000, .684] .294
#> gender 94.598 23.962 1.000 9.000 3.948 .078 . .305 [.000, .610] .187
#> age 12.399 23.962 1.000 9.000 0.517 .490 .054 [.000, .381] .029
#> treatment * gender 30.766 23.962 2.000 9.000 1.284 .323 .222 [.000, .516] .130
#> phase 79.287 3.909 1.697 15.277 20.281 <.001 *** .693 [.420, .813] .246
#> treatment * phase 23.743 3.909 3.395 15.277 6.073 .005 ** .574 [.192, .728] .164
#> gender * phase 0.963 3.909 1.697 15.277 0.246 .749 .027 [.000, .193] .004
#> age * phase 12.108 3.909 1.697 15.277 3.097 .081 . .256 [.000, .502] .048
#> treatment * gender * phase 6.261 3.909 3.395 15.277 1.601 .228 .262 [.000, .470] .049
#> hour 50.786 2.475 2.137 19.230 20.519 <.001 *** .695 [.459, .804] .209
#> treatment * hour 1.766 2.475 4.273 19.230 0.714 .601 .137 [.000, .271] .018
#> gender * hour 1.753 2.475 2.137 19.230 0.708 .514 .073 [.000, .254] .009
#> age * hour 6.976 2.475 2.137 19.230 2.818 .082 . .238 [.000, .456] .035
#> treatment * gender * hour 1.459 2.475 4.273 19.230 0.590 .684 .116 [.000, .233] .015
#> phase * hour 2.802 2.826 3.485 31.362 0.991 .419 .099 [.000, .223] .023
#> treatment * phase * hour 0.944 2.826 6.969 31.362 0.334 .932 .069 [.000, .027] .016
#> gender * phase * hour 2.540 2.826 3.485 31.362 0.899 .465 .091 [.000, .210] .021
#> age * phase * hour 2.164 2.826 3.485 31.362 0.766 .540 .078 [.000, .188] .018
#> treatment * gender * phase * hour 1.840 2.826 6.969 31.362 0.651 .710 .126 [.000, .170] .030
#> ───────────────────────────────────────────────────────────────────────────────────────────────────────
#> Sphericity correction method: GG (Greenhouse-Geisser)
#> MSE = mean square error (the residual variance of the linear model)
#> η²p = partial eta-squared = SS / (SS + SSE) = F * df1 / (F * df1 + df2)
#> ω²p = partial omega-squared = (F - 1) * df1 / (F * df1 + df2 + 1)
#> η²G = generalized eta-squared (see Olejnik & Algina, 2003)
#> Cohen’s f² = η²p / (1 - η²p)
#>
#> Levene’s Test for Homogeneity of Variance:
#> ────────────────────────────────────────────
#> Levene’s F df1 df2 p
#> ────────────────────────────────────────────
#> DV: pre_hour1 1.019 5 10 .456
#> DV: pre_hour2 3.233 5 10 .054 .
#> DV: pre_hour3 5.654 5 10 .010 **
#> DV: pre_hour4 0.793 5 10 .578
#> DV: pre_hour5 1.208 5 10 .372
#> DV: post_hour1 1.831 5 10 .194
#> DV: post_hour2 2.664 5 10 .088 .
#> DV: post_hour3 2.566 5 10 .096 .
#> DV: post_hour4 1.570 5 10 .254
#> DV: post_hour5 1.773 5 10 .206
#> DV: fup_hour1 3.012 5 10 .065 .
#> DV: fup_hour2 1.392 5 10 .306
#> DV: fup_hour3 2.672 5 10 .087 .
#> DV: fup_hour4 3.362 5 10 .049 *
#> DV: fup_hour5 0.679 5 10 .650
#> ────────────────────────────────────────────
#>
#> Mauchly’s Test of Sphericity:
#> ────────────────────────────────────────────────────────
#> Mauchly's W p
#> ────────────────────────────────────────────────────────
#> phase 0.8218 .456
#> treatment * phase 0.8218 .456
#> gender * phase 0.8218 .456
#> age * phase 0.8218 .456
#> treatment * gender * phase 0.8218 .456
#> hour 0.0967 .049 *
#> treatment * hour 0.0967 .049 *
#> gender * hour 0.0967 .049 *
#> age * hour 0.0967 .049 *
#> treatment * gender * hour 0.0967 .049 *
#> phase * hour 0.0002 .087 .
#> treatment * phase * hour 0.0002 .087 .
#> gender * phase * hour 0.0002 .087 .
#> age * phase * hour 0.0002 .087 .
#> treatment * gender * phase * hour 0.0002 .087 .
#> ────────────────────────────────────────────────────────
#>
# }