
Download pre-trained language models from HuggingFace.
Source:R/03-dynamic.R
text_model_download.RdDownload pre-trained language models (Transformers Models,
such as GPT, BERT, RoBERTa, DeBERTa, DistilBERT, etc.)
from HuggingFace to
your local ".cache" folder ("C:/Users/[YourUserName]/.cache/").
The models will never be removed unless you run
text_model_remove.
Arguments
- model
Character string(s) specifying the pre-trained language model(s) to be downloaded. For a full list of options, see HuggingFace. Defaults to download nothing and check currently downloaded models.
Example choices:
"gpt2"(50257 vocab, 768 dims, 12 layers)"openai-gpt"(40478 vocab, 768 dims, 12 layers)"bert-base-uncased"(30522 vocab, 768 dims, 12 layers)"bert-large-uncased"(30522 vocab, 1024 dims, 24 layers)"bert-base-cased"(28996 vocab, 768 dims, 12 layers)"bert-large-cased"(28996 vocab, 1024 dims, 24 layers)"bert-base-chinese"(21128 vocab, 768 dims, 12 layers)"bert-base-multilingual-cased"(119547 vocab, 768 dims, 12 layers)"distilbert-base-uncased"(30522 vocab, 768 dims, 6 layers)"distilbert-base-cased"(28996 vocab, 768 dims, 6 layers)"distilbert-base-multilingual-cased"(119547 vocab, 768 dims, 6 layers)"albert-base-v2"(30000 vocab, 768 dims, 12 layers)"albert-large-v2"(30000 vocab, 1024 dims, 24 layers)"roberta-base"(50265 vocab, 768 dims, 12 layers)"roberta-large"(50265 vocab, 1024 dims, 24 layers)"xlm-roberta-base"(250002 vocab, 768 dims, 12 layers)"xlm-roberta-large"(250002 vocab, 1024 dims, 24 layers)"xlnet-base-cased"(32000 vocab, 768 dims, 12 layers)"xlnet-large-cased"(32000 vocab, 1024 dims, 24 layers)"microsoft/deberta-v3-base"(128100 vocab, 768 dims, 12 layers)"microsoft/deberta-v3-large"(128100 vocab, 1024 dims, 24 layers)...(see https://huggingface.co/models)
Examples
if (FALSE) {
# text_init() # initialize the environment
text_model_download() # check downloaded models
text_model_download(c(
"bert-base-uncased",
"bert-base-cased",
"bert-base-multilingual-cased"
))
}