Normal users should use FMAT_run()
.
This function is only for technical check.
Usage
fill_mask(query, model, targets = NULL, topn = 5, gpu)
fill_mask_check(query, models, targets = NULL, topn = 5, gpu)
Arguments
- query
Query sentence with mask token.
- model, models
Model name(s).
- targets
Target words to fill in the mask. Defaults to
NULL
(return the top 5 most likely words).- topn
Number of the most likely predictions to return. Defaults to
5
.- gpu
Use GPU (3x faster than CPU) to run the fill-mask pipeline? Defaults to missing value that will automatically use available GPU (if not available, then use CPU). An NVIDIA GPU device (e.g., GeForce RTX Series) is required to use GPU. See Guidance for GPU Acceleration.
Options passing to the
device
parameter in Python:FALSE
: CPU (device = -1
).TRUE
: GPU (device = 0
).Any other value: passing to transformers.pipeline(device=...) which defines the device (e.g.,
"cpu"
,"cuda:0"
, or a GPU device id like1
) on which the pipeline will be allocated.
Functions
fill_mask()
: Check performance of one model.fill_mask_check()
: Check performance of multiple models.
Examples
if (FALSE) { # \dontrun{
query = "Paris is the [MASK] of France."
models = c("bert-base-uncased", "bert-base-cased")
d.check = fill_mask_check(query, models, topn=2)
} # }