The DPI curve analysis.
Usage
DPI_curve(
model,
y,
x,
data = NULL,
k.covs = 1:10,
n.sim = 1000,
seed = NULL,
file = NULL,
width = 6,
height = 4,
dpi = 500
)
Arguments
- model
Model object (
lm
).- y
Dependent (outcome) variable.
- x
Independent (predictor) variable.
- data
[Optional] Defaults to
NULL
. Ifdata
is specified, thenmodel
will be ignored and a linear modellm({y} ~ {x} + .)
will be fitted inside. This is helpful for exploring all variables in a dataset.- k.covs
An integer vector of number of random covariates (simulating potential omitted variables) added to each simulation sample. Defaults to
1:10
(producing DPI results fork.cov
=1~10). For details, seeDPI
.- n.sim
Number of simulation samples. Defaults to
1000
.- seed
Random seed for replicable results. Defaults to
NULL
.- file
File name of saved plot (
".png"
or".pdf"
).- width, height
Width and height (in inches) of saved plot. Defaults to
6
and4
.- dpi
Dots per inch (figure resolution). Defaults to
500
.
Examples
model = lm(Ozone ~ ., data=airquality)
DPIs = DPI_curve(model, y="Ozone", x="Solar.R", seed=1)
#> ⠙ Simulation k.covs: 1/10 ███████████████████████████████ 10% [00:00:3.4]
#> ⠹ Simulation k.covs: 2/10 ███████████████████████████████ 20% [00:00:07]
#> ⠸ Simulation k.covs: 3/10 ███████████████████████████████ 30% [00:00:10.6]
#> ⠼ Simulation k.covs: 4/10 ███████████████████████████████ 40% [00:00:14.4]
#> ⠴ Simulation k.covs: 5/10 ███████████████████████████████ 50% [00:00:18.4]
#> ⠦ Simulation k.covs: 6/10 ███████████████████████████████ 60% [00:00:22.5]
#> ⠧ Simulation k.covs: 7/10 ███████████████████████████████ 70% [00:00:26.7]
#> ⠇ Simulation k.covs: 8/10 ███████████████████████████████ 80% [00:00:31.2]
#> ⠏ Simulation k.covs: 9/10 ███████████████████████████████ 90% [00:00:35.6]
#> ✔ 10 * 1000 simulation samples estimated in 40.3s
#>
plot(DPIs) # ggplot object