This file provides a supplemental example to illustrate the Contextual Effects Model (CEM), Multilevel Linear Model (MLM), and Panel Linear Model (PLM).
set.seed(1)
N = 122 # Clusters
M = 12 # Group size
center = function(x) x - mean(x)
data = data.table(
Clus = as.factor(rep(1:N, M)),
CaseID = as.factor(rep(1:M, each=N))
)
data[, Xb := 1 + rep(center(rnorm(N)), M)]
data[, W := 2 + rep(center(rnorm(N)), M)]
data[, Wcgm := center(W)]
data[, Xw := 2 * scale(rnorm(M)), keyby=Clus]
data[, X := Xb + Xw]
data[, eij := scale(rnorm(M)), keyby=Clus]
data[, Y := 5 + # Intercept
-0.2 * Xb + # Between-level effect of X
0.2 * Xw + # Within-level effect of X
0.1 * Wcgm + # Between-level effect of W
-0.2 * Xb * Wcgm + # Between-level interaction
0.2 * Xw * Wcgm + # Cross-level interaction
eij]
data = data[order(Clus, CaseID), .(
Clus, # Cluster
CaseID, # Subject ID
Y, # L1 Outcome
X, # L1 Predictor (X = Xb + Xw)
Xb, # X (cluster mean value)
Xw, # X (centered within cluster)
W, # L2 Predictor
Wcgm # W (centered at grand mean)
)]
glimpse(data)
## Rows: 1,464
## Columns: 8
## $ Clus <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
## $ CaseID <fct> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, …
## $ Y <dbl> 4.361, 3.160, 5.898, 4.428, 5.616, 6.729, 4.525, 4.682, 3.535, …
## $ X <dbl> 2.6341, -4.4815, -1.2076, -0.5572, -0.3557, 2.3135, 0.3244, 0.9…
## $ Xb <dbl> 0.2588, 0.2588, 0.2588, 0.2588, 0.2588, 0.2588, 0.2588, 0.2588,…
## $ Xw <dbl> 2.37533, -4.74025, -1.46633, -0.81594, -0.61450, 2.05477, 0.065…
## $ W <dbl> 1.848, 1.848, 1.848, 1.848, 1.848, 1.848, 1.848, 1.848, 1.848, …
## $ Wcgm <dbl> -0.15166, -0.15166, -0.15166, -0.15166, -0.15166, -0.15166, -0.…
## Correlations below and above the diagonal represent
## within-level and between-level correlations, respectively:
## ──────────────────────
## Y X W
## ──────────────────────
## Y -0.556 -0.348
## X 0.316 -0.057
## W
## ──────────────────────
##
## Within-Level Correlation [95% CI]:
## ─────────────────────────────────────────
## r [95% CI] p
## ─────────────────────────────────────────
## Y.wg-X.wg 0.316 [0.269, 0.361] <.001 ***
## Y.wg-W.wg
## X.wg-W.wg
## ─────────────────────────────────────────
##
## Between-Level Correlation [95% CI]:
## ────────────────────────────────────────────
## r [95% CI] p
## ────────────────────────────────────────────
## Y.bg-X.bg -0.556 [-0.668, -0.420] <.001 ***
## Y.bg-W.bg -0.348 [-0.496, -0.182] <.001 ***
## X.bg-W.bg -0.057 [-0.233, 0.122] .530
## ────────────────────────────────────────────
##
## Intraclass Correlation:
## ────────────────────────
## Y X W
## ────────────────────────
## ICC1 -0.022 0.100 1.000
## ICC2 -0.345 0.573 1.000
## ────────────────────────
## Descriptive Statistics:
## ───────────────────────────────────────────────────────────
## N Mean SD | Median Min Max Skewness Kurtosis
## ───────────────────────────────────────────────────────────
## Y 1464 4.81 1.12 | 4.82 0.60 8.25 -0.04 -0.00
## X 1464 1.00 2.11 | 0.95 -5.12 6.76 -0.00 -0.31
## Xb 1464 1.00 0.88 | 0.94 -1.33 3.29 0.04 -0.07
## Xw 1464 0.00 1.92 | -0.06 -5.36 5.23 -0.01 -0.47
## W 1464 2.00 1.02 | 1.98 -0.83 4.56 0.16 -0.05
## Wcgm 1464 -0.00 1.02 | -0.02 -2.83 2.56 0.16 -0.05
## ───────────────────────────────────────────────────────────
## 1-1 Model (Within-level main effect)
CEM.11.F = lmer(
Y ~ Xb + Xw + (1 | Clus),
data=data, control=lmerControl(optimizer="bobyqa"))
CEM.11.R = lmer(
Y ~ Xb + Xw + (Xw | Clus),
data=data, control=lmerControl(optimizer="bobyqa"))
anova(CEM.11.F, CEM.11.R)
## Data: data
## Models:
## CEM.11.F: Y ~ Xb + Xw + (1 | Clus)
## CEM.11.R: Y ~ Xb + Xw + (Xw | Clus)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## CEM.11.F 5 4325 4352 -2158 4315
## CEM.11.R 7 4238 4275 -2112 4224 91.6 2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Linear hypothesis test
##
## Hypothesis:
## Xb - Xw = 0
##
## Model 1: restricted model
## Model 2: Y ~ Xb + Xw + (1 | Clus)
##
## Df Chisq Pr(>Chisq)
## 1
## 2 1 107 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Linear hypothesis test
##
## Hypothesis:
## Xb - Xw = 0
##
## Model 1: restricted model
## Model 2: Y ~ Xb + Xw + (Xw | Clus)
##
## Df Chisq Pr(>Chisq)
## 1
## 2 1 96.7 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 2-1 Model (Between-level main effect)
CEM.21.F = lmer(
Y ~ Xb + Xw + Wcgm + (1 | Clus),
data=data, control=lmerControl(optimizer="bobyqa"))
CEM.21.R = lmer(
Y ~ Xb + Xw + Wcgm + (Xw | Clus),
data=data, control=lmerControl(optimizer="bobyqa"))
anova(CEM.21.F, CEM.21.R)
## Data: data
## Models:
## CEM.21.F: Y ~ Xb + Xw + Wcgm + (1 | Clus)
## CEM.21.R: Y ~ Xb + Xw + Wcgm + (Xw | Clus)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## CEM.21.F 6 4312 4344 -2150 4300
## CEM.21.R 8 4231 4274 -2108 4215 85 2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 2x1 Model (Cross-level interaction)
CEM.2x1.F = lmer(
Y ~ Xb + Xw + Wcgm + Xb:Wcgm + Xw:Wcgm + (1 | Clus),
data=data, control=lmerControl(optimizer="bobyqa"))
CEM.2x1.R = lmer(
Y ~ Xb + Xw + Wcgm + Xb:Wcgm + Xw:Wcgm + (Xw | Clus),
data=data, control=lmerControl(optimizer="bobyqa"))
anova(CEM.2x1.F, CEM.2x1.R)
## Data: data
## Models:
## CEM.2x1.F: Y ~ Xb + Xw + Wcgm + Xb:Wcgm + Xw:Wcgm + (1 | Clus)
## CEM.2x1.R: Y ~ Xb + Xw + Wcgm + Xb:Wcgm + Xw:Wcgm + (Xw | Clus)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## CEM.2x1.F 8 4041 4083 -2012 4025
## CEM.2x1.R 10 4044 4097 -2012 4024 0.6 2 0.74
## JOHNSON-NEYMAN INTERVAL
##
## When Wcgm is OUTSIDE the interval [-1.11, -0.75], the slope of Xw is p <
## .05.
##
## Note: The range of observed values of Wcgm is [-2.83, 2.56]
##
## SIMPLE SLOPES ANALYSIS
##
## Slope of Xw when Wcgm = -1.023e+00 (- 1 SD):
##
## Est. S.E. t val. p
## ------- ------ -------- ------
## -0.02 0.02 -1.12 0.26
##
## Slope of Xw when Wcgm = -3.094e-17 (Mean):
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.18 0.01 13.70 0.00
##
## Slope of Xw when Wcgm = 1.023e+00 (+ 1 SD):
##
## Est. S.E. t val. p
## ------ ------ -------- ------
## 0.38 0.02 20.49 0.00
interact_plot(CEM.2x1.F, pred=Xw, modx=Wcgm,
modx.values="plus-minus",
modx.labels=c("Low", "High"),
legend.main="Moderator") +
ylab("Yij") + xlab("Xw")
## JOHNSON-NEYMAN INTERVAL
##
## When Wcgm is OUTSIDE the interval [-1.11, -0.75], the slope of Xw is p <
## .05.
##
## Note: The range of observed values of Wcgm is [-2.83, 2.56]
## 1-1
CEM.PLM.11.R = plm(
Y ~ Xb + Xw, index=c("Clus"),
data=data, model="random")
print(summary(CEM.PLM.11.R), digits=3)
## Oneway (individual) effect Random Effect Model
## (Swamy-Arora's transformation)
##
## Call:
## plm(formula = Y ~ Xb + Xw, data = data, model = "random", index = c("Clus"))
##
## Balanced Panel: n = 122, T = 12, N = 1464
##
## Effects:
## var std.dev share
## idiosyncratic 1.16 1.08 1
## individual 0.00 0.00 0
## theta: 0
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -3.6100 -0.7043 -0.0423 0.7169 4.3357
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 4.9881 0.0419 119.19 < 2e-16 ***
## Xb -0.1778 0.0314 -5.66 1.5e-08 ***
## Xw 0.1792 0.0144 12.41 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 1840
## Residual Sum of Squares: 1630
## R-Squared: 0.113
## Adj. R-Squared: 0.112
## Chisq: 186.102 on 2 DF, p-value: <2e-16
## Linear hypothesis test
##
## Hypothesis:
## Xb - Xw = 0
##
## Model 1: restricted model
## Model 2: Y ~ Xb + Xw
##
## Res.Df Df Chisq Pr(>Chisq)
## 1 1462
## 2 1461 1 107 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 2-1
CEM.PLM.21.R = plm(
Y ~ Xb + Xw + Wcgm, index=c("Clus"),
data=data, model="random")
print(summary(CEM.PLM.21.R), digits=3)
## Oneway (individual) effect Random Effect Model
## (Swamy-Arora's transformation)
##
## Call:
## plm(formula = Y ~ Xb + Xw + Wcgm, data = data, model = "random",
## index = c("Clus"))
##
## Balanced Panel: n = 122, T = 12, N = 1464
##
## Effects:
## var std.dev share
## idiosyncratic 1.16 1.08 1
## individual 0.00 0.00 0
## theta: 0
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -3.4139 -0.7182 -0.0493 0.7289 4.0502
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 4.9951 0.0417 119.82 < 2e-16 ***
## Xb -0.1848 0.0313 -5.90 3.7e-09 ***
## Xw 0.1792 0.0144 12.47 < 2e-16 ***
## Wcgm -0.1049 0.0269 -3.89 9.9e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 1840
## Residual Sum of Squares: 1620
## R-Squared: 0.122
## Adj. R-Squared: 0.12
## Chisq: 203.069 on 3 DF, p-value: <2e-16
## 2x1
CEM.PLM.2x1.R = plm(
Y ~ Xb + Xw + Wcgm + Xb:Wcgm + Xw:Wcgm, index=c("Clus"),
data=data, model="random")
print(summary(CEM.PLM.2x1.R), digits=3)
## Oneway (individual) effect Random Effect Model
## (Swamy-Arora's transformation)
##
## Call:
## plm(formula = Y ~ Xb + Xw + Wcgm + Xb:Wcgm + Xw:Wcgm, data = data,
## model = "random", index = c("Clus"))
##
## Balanced Panel: n = 122, T = 12, N = 1464
##
## Effects:
## var std.dev share
## idiosyncratic 1 1 1
## individual 0 0 0
## theta: 0
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -2.5606 -0.6512 -0.0395 0.6822 2.5273
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 5.0000 0.0380 131.67 < 2e-16 ***
## Xb -0.2000 0.0286 -7.00 2.6e-12 ***
## Xw 0.1792 0.0131 13.70 < 2e-16 ***
## Wcgm 0.1000 0.0348 2.87 0.0041 **
## Xb:Wcgm -0.2000 0.0241 -8.29 < 2e-16 ***
## Xw:Wcgm 0.1955 0.0128 15.28 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 1840
## Residual Sum of Squares: 1340
## R-Squared: 0.273
## Adj. R-Squared: 0.27
## Chisq: 546.925 on 5 DF, p-value: <2e-16
## 1-1
PLM.11.F = plm(
Y ~ X, index=c("Clus"),
data=data, model="within")
PLM.11.R = plm(
Y ~ X, index=c("Clus"),
data=data, model="random")
## 2-1
PLM.21.F = plm(
Y ~ X + Wcgm, index=c("Clus"),
data=data, model="within")
PLM.21.R = plm(
Y ~ X + Wcgm, index=c("Clus"),
data=data, model="random")
## 2x1
PLM.2x1.F = plm(
Y ~ X * Wcgm, index=c("Clus"),
data=data, model="within")
PLM.2x1.R = plm(
Y ~ X * Wcgm, index=c("Clus"),
data=data, model="random")
## Hausman Test
phtest(PLM.11.F, PLM.11.R)
##
## Hausman Test
##
## data: Y ~ X
## chisq = 123, df = 1, p-value <2e-16
## alternative hypothesis: one model is inconsistent
##
## Hausman Test
##
## data: Y ~ X + Wcgm
## chisq = 123, df = 1, p-value <2e-16
## alternative hypothesis: one model is inconsistent
##
## Hausman Test
##
## data: Y ~ X * Wcgm
## chisq = 736, df = 2, p-value <2e-16
## alternative hypothesis: one model is inconsistent
## 1-1 Model (Within-level main effect)
MLM.11.F = lmer(
Y ~ X + (1 | Clus),
data=data, control=lmerControl(optimizer="bobyqa"))
MLM.11.R = lmer(
Y ~ X + (X | Clus),
data=data, control=lmerControl(optimizer="bobyqa"))
## 2-1 Model (Between-level main effect)
MLM.21.F = lmer(
Y ~ X + Wcgm + (1 | Clus),
data=data, control=lmerControl(optimizer="bobyqa"))
MLM.21.R = lmer(
Y ~ X + Wcgm + (X | Clus),
data=data, control=lmerControl(optimizer="bobyqa"))
## 2x1 Model (Cross-level interaction)
MLM.2x1.F = lmer(
Y ~ X * Wcgm + (1 | Clus),
data=data, control=lmerControl(optimizer="bobyqa"))
MLM.2x1.R = lmer(
Y ~ X * Wcgm + (X | Clus),
data=data, control=lmerControl(optimizer="bobyqa"))
## CEM (Fixed Slopes) Summary
tab_model(
CEM.11.F,
CEM.21.F,
CEM.2x1.F,
show.ci=FALSE, show.se=TRUE, collapse.se=TRUE, string.est="Coef.",
show.icc=FALSE, show.aic=FALSE, minus.sign="\u2013", digits=3,
dv.labels=c("1-1", "2-1", "2x1"),
title="Contextual Effects Model (Fixed Slopes)")
1-1 | 2-1 | 2x1 | ||||
---|---|---|---|---|---|---|
Predictors | Coef. | p | Coef. | p | Coef. | p |
(Intercept) |
4.988 (0.042) |
<0.001 |
4.995 (0.042) |
<0.001 |
5.000 (0.038) |
<0.001 |
Xb |
–0.178 (0.031) |
<0.001 |
–0.185 (0.031) |
<0.001 |
–0.200 (0.029) |
<0.001 |
Xw |
0.179 (0.014) |
<0.001 |
0.179 (0.014) |
<0.001 |
0.179 (0.013) |
<0.001 |
Wcgm |
–0.105 (0.027) |
<0.001 |
0.100 (0.035) |
0.004 | ||
Xb × Wcgm |
–0.200 (0.024) |
<0.001 | ||||
Xw × Wcgm |
0.195 (0.013) |
<0.001 | ||||
Random Effects | ||||||
σ2 | 1.12 | 1.11 | 0.92 | |||
τ00 | 0.00 Clus | 0.00 Clus | 0.00 Clus | |||
N | 122 Clus | 122 Clus | 122 Clus | |||
Observations | 1464 | 1464 | 1464 | |||
Marginal R2 / Conditional R2 | 0.113 / NA | 0.122 / NA | 0.272 / NA |
## CEM (Random Slopes) Summary
tab_model(
CEM.11.R,
CEM.21.R,
CEM.2x1.R,
show.ci=FALSE, show.se=TRUE, collapse.se=TRUE, string.est="Coef.",
show.icc=FALSE, show.aic=FALSE, minus.sign="\u2013", digits=3,
dv.labels=c("1-1", "2-1", "2x1"),
title="Contextual Effects Model (Random Slopes)")
1-1 | 2-1 | 2x1 | ||||
---|---|---|---|---|---|---|
Predictors | Coef. | p | Coef. | p | Coef. | p |
(Intercept) |
4.998 (0.040) |
<0.001 |
4.995 (0.039) |
<0.001 |
5.000 (0.038) |
<0.001 |
Xb |
–0.188 (0.030) |
<0.001 |
–0.185 (0.029) |
<0.001 |
–0.200 (0.028) |
<0.001 |
Xw |
0.179 (0.023) |
<0.001 |
0.179 (0.023) |
<0.001 |
0.179 (0.014) |
<0.001 |
Wcgm |
–0.106 (0.025) |
<0.001 |
0.100 (0.035) |
0.004 | ||
Xb × Wcgm |
–0.200 (0.024) |
<0.001 | ||||
Xw × Wcgm |
0.195 (0.013) |
<0.001 | ||||
Random Effects | ||||||
σ2 | 0.96 | 0.96 | 0.91 | |||
τ00 | 0.01 Clus | 0.00 Clus | 0.00 Clus | |||
τ11 | 0.04 Clus.Xw | 0.04 Clus.Xw | 0.00 Clus.Xw | |||
ρ01 | -1.00 Clus | 1.00 Clus | ||||
N | 122 Clus | 122 Clus | 122 Clus | |||
Observations | 1464 | 1464 | 1464 | |||
Marginal R2 / Conditional R2 | 0.132 / NA | 0.122 / 0.243 | 0.274 / NA |
## CEM (PLM-REM) Summary
tab_model(
CEM.PLM.11.R,
CEM.OLS.11,
CEM.PLM.21.R,
CEM.OLS.21,
CEM.PLM.2x1.R,
CEM.OLS.2x1,
show.ci=FALSE, show.se=TRUE, collapse.se=TRUE, string.est="Coef.",
show.icc=FALSE, show.aic=FALSE, minus.sign="\u2013", digits=3,
dv.labels=c("1-1", "1-1 (OLS)", "2-1", "2-1 (OLS)", "2x1", "2x1 (OLS)"),
title="Contextual Effects Model (Panel [Random Effects] Model)")
1-1 | 1-1 (OLS) | 2-1 | 2-1 (OLS) | 2x1 | 2x1 (OLS) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Predictors | Coef. | p | Coef. | p | Coef. | p | Coef. | p | Coef. | p | Coef. | p |
(Intercept) |
4.988 (0.042) |
<0.001 |
4.988 (0.042) |
<0.001 |
4.995 (0.042) |
<0.001 |
4.995 (0.042) |
<0.001 |
5.000 (0.038) |
<0.001 |
5.000 (0.038) |
<0.001 |
Xb |
–0.178 (0.031) |
<0.001 |
–0.178 (0.031) |
<0.001 |
–0.185 (0.031) |
<0.001 |
–0.185 (0.031) |
<0.001 |
–0.200 (0.029) |
<0.001 |
–0.200 (0.029) |
<0.001 |
Xw |
0.179 (0.014) |
<0.001 |
0.179 (0.014) |
<0.001 |
0.179 (0.014) |
<0.001 |
0.179 (0.014) |
<0.001 |
0.179 (0.013) |
<0.001 |
0.179 (0.013) |
<0.001 |
Wcgm |
–0.105 (0.027) |
<0.001 |
–0.105 (0.027) |
<0.001 |
0.100 (0.035) |
0.004 |
0.100 (0.035) |
0.004 | ||||
Xb × Wcgm |
–0.200 (0.024) |
<0.001 |
–0.200 (0.024) |
<0.001 | ||||||||
Xw × Wcgm |
0.195 (0.013) |
<0.001 |
0.195 (0.013) |
<0.001 | ||||||||
Observations | 1464 | 1464 | 1464 | 1464 | 1464 | 1464 | ||||||
R2 / R2 adjusted | 0.113 / 0.112 | 0.113 / 0.112 | 0.122 / 0.120 | 0.122 / 0.120 | 0.273 / 0.270 | 0.273 / 0.270 |
## FEM Summary
tab_model(
PLM.11.F,
PLM.21.F,
PLM.2x1.F,
show.ci=FALSE, show.se=TRUE, collapse.se=TRUE, string.est="Coef.",
show.icc=FALSE, show.aic=FALSE, minus.sign="\u2013", digits=3,
dv.labels=c("1-1", "2-1", "2x1"),
title="Panel Linear Model (Fixed Effects Model)")
1-1 | 2-1 | 2x1 | ||||
---|---|---|---|---|---|---|
Predictors | Coef. | p | Coef. | p | Coef. | p |
X |
0.179 (0.015) |
<0.001 |
0.179 (0.015) |
<0.001 |
0.179 (0.014) |
<0.001 |
X × Wcgm |
0.195 (0.013) |
<0.001 | ||||
Observations | 1464 | 1464 | 1464 | |||
R2 / R2 adjusted | 0.100 / 0.018 | 0.100 / 0.018 | 0.224 / 0.153 |
## REM Summary
tab_model(
PLM.11.R,
OLS.11,
PLM.21.R,
OLS.21,
PLM.2x1.R,
OLS.2x1,
show.ci=FALSE, show.se=TRUE, collapse.se=TRUE, string.est="Coef.",
show.icc=FALSE, show.aic=FALSE, minus.sign="\u2013", digits=3,
dv.labels=c("1-1", "1-1 (OLS)", "2-1", "2-1 (OLS)", "2x1", "2x1 (OLS)"),
title="Panel Linear Model (Random Effects Model)")
1-1 | 1-1 (OLS) | 2-1 | 2-1 (OLS) | 2x1 | 2x1 (OLS) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Predictors | Coef. | p | Coef. | p | Coef. | p | Coef. | p | Coef. | p | Coef. | p |
(Intercept) |
4.693 (0.032) |
<0.001 |
4.693 (0.032) |
<0.001 |
4.694 (0.032) |
<0.001 |
4.694 (0.032) |
<0.001 |
4.699 (0.031) |
<0.001 |
4.699 (0.031) |
<0.001 |
X |
0.117 (0.014) |
<0.001 |
0.117 (0.014) |
<0.001 |
0.116 (0.014) |
<0.001 |
0.116 (0.014) |
<0.001 |
0.117 (0.013) |
<0.001 |
0.117 (0.013) |
<0.001 |
Wcgm |
–0.090 (0.028) |
0.001 |
–0.090 (0.028) |
0.001 |
–0.205 (0.030) |
<0.001 |
–0.205 (0.030) |
<0.001 | ||||
X × Wcgm |
0.112 (0.013) |
<0.001 |
0.112 (0.013) |
<0.001 | ||||||||
Observations | 1464 | 1464 | 1464 | 1464 | 1464 | 1464 | ||||||
R2 / R2 adjusted | 0.048 / 0.048 | 0.048 / 0.048 | 0.055 / 0.054 | 0.055 / 0.054 | 0.104 / 0.102 | 0.104 / 0.102 |
## MLM (Fixed Slopes) Summary
tab_model(
MLM.11.F,
MLM.21.F,
MLM.2x1.F,
show.ci=FALSE, show.se=TRUE, collapse.se=TRUE, string.est="Coef.",
show.icc=FALSE, show.aic=FALSE, minus.sign="\u2013", digits=3,
dv.labels=c("1-1", "2-1", "2x1"),
title="Multilevel Linear Model (Fixed Slopes)")
1-1 | 2-1 | 2x1 | ||||
---|---|---|---|---|---|---|
Predictors | Coef. | p | Coef. | p | Coef. | p |
(Intercept) |
4.680 (0.035) |
<0.001 |
4.684 (0.034) |
<0.001 |
4.665 (0.045) |
<0.001 |
X |
0.130 (0.014) |
<0.001 |
0.126 (0.014) |
<0.001 |
0.154 (0.013) |
<0.001 |
Wcgm |
–0.090 (0.031) |
0.004 |
–0.252 (0.044) |
<0.001 | ||
X × Wcgm |
0.160 (0.013) |
<0.001 | ||||
Random Effects | ||||||
σ2 | 1.17 | 1.17 | 1.01 | |||
τ00 | 0.03 Clus | 0.02 Clus | 0.14 Clus | |||
N | 122 Clus | 122 Clus | 122 Clus | |||
Observations | 1464 | 1464 | 1464 | |||
Marginal R2 / Conditional R2 | 0.059 / 0.084 | 0.063 / 0.080 | 0.171 / 0.273 |
## MLM (Random Slopes) Summary
tab_model(
MLM.11.R,
MLM.21.R,
MLM.2x1.R,
show.ci=FALSE, show.se=TRUE, collapse.se=TRUE, string.est="Coef.",
show.icc=FALSE, show.aic=FALSE, minus.sign="\u2013", digits=3,
dv.labels=c("1-1", "2-1", "2x1"),
title="Multilevel Linear Model (Random Slopes)")
1-1 | 2-1 | 2x1 | ||||
---|---|---|---|---|---|---|
Predictors | Coef. | p | Coef. | p | Coef. | p |
(Intercept) |
4.681 (0.042) |
<0.001 |
4.692 (0.037) |
<0.001 |
4.676 (0.043) |
<0.001 |
X |
0.146 (0.020) |
<0.001 |
0.144 (0.020) |
<0.001 |
0.154 (0.014) |
<0.001 |
Wcgm |
–0.121 (0.034) |
<0.001 |
–0.241 (0.042) |
<0.001 | ||
X × Wcgm |
0.159 (0.014) |
<0.001 | ||||
Random Effects | ||||||
σ2 | 1.03 | 1.04 | 0.99 | |||
τ00 | 0.10 Clus | 0.06 Clus | 0.12 Clus | |||
τ11 | 0.03 Clus.X | 0.03 Clus.X | 0.00 Clus.X | |||
ρ01 | -0.59 Clus | -0.35 Clus | 0.16 Clus | |||
N | 122 Clus | 122 Clus | 122 Clus | |||
Observations | 1464 | 1464 | 1464 | |||
Marginal R2 / Conditional R2 | 0.072 / 0.214 | 0.083 / 0.216 | 0.170 / 0.278 |
Note: The “Marginal R2 / Conditional
R2” in each table indeed refers to Marginal
R2 / Conditional R2 for models built with
lmer()
and R2 / R2
adjusted for models built with plm()
. For an
appropriate comparison, only the R2 displayed before
the slash “/” can be interpreted and compared across models, which
refers to the proportion of variance explained by predictors.
## 1-1 Model (Within-level main effect)
tab_model(
CEM.11.F,
CEM.11.R,
CEM.PLM.11.R,
PLM.11.F,
PLM.11.R,
MLM.11.F,
MLM.11.R,
show.ci=FALSE, show.se=TRUE, collapse.se=TRUE, string.est="Coef.",
show.icc=FALSE, show.aic=FALSE, minus.sign="\u2013", digits=3,
dv.labels=c("CEM<br/>MLM-Fixed", "CEM<br/>MLM-Random", "CEM<br/>PLM-REM (OLS)",
"PLM-FEM", "PLM-REM (OLS)", "MLM-Fixed", "MLM-Random"),
title="1-1 Model (Within-level main effect)")
CEM MLM-Fixed |
CEM MLM-Random |
CEM PLM-REM (OLS) |
PLM-FEM | PLM-REM (OLS) | MLM-Fixed | MLM-Random | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Predictors | Coef. | p | Coef. | p | Coef. | p | Coef. | p | Coef. | p | Coef. | p | Coef. | p |
(Intercept) |
4.988 (0.042) |
<0.001 |
4.998 (0.040) |
<0.001 |
4.988 (0.042) |
<0.001 |
4.693 (0.032) |
<0.001 |
4.680 (0.035) |
<0.001 |
4.681 (0.042) |
<0.001 | ||
Xb |
–0.178 (0.031) |
<0.001 |
–0.188 (0.030) |
<0.001 |
–0.178 (0.031) |
<0.001 | ||||||||
Xw |
0.179 (0.014) |
<0.001 |
0.179 (0.023) |
<0.001 |
0.179 (0.014) |
<0.001 | ||||||||
X |
0.179 (0.015) |
<0.001 |
0.117 (0.014) |
<0.001 |
0.130 (0.014) |
<0.001 |
0.146 (0.020) |
<0.001 | ||||||
Random Effects | ||||||||||||||
σ2 | 1.12 | 0.96 | 1.17 | 1.03 | ||||||||||
τ00 | 0.00 Clus | 0.01 Clus | 0.03 Clus | 0.10 Clus | ||||||||||
τ11 | 0.04 Clus.Xw | 0.03 Clus.X | ||||||||||||
ρ01 | -1.00 Clus | -0.59 Clus | ||||||||||||
N | 122 Clus | 122 Clus | 122 Clus | 122 Clus | ||||||||||
Observations | 1464 | 1464 | 1464 | 1464 | 1464 | 1464 | 1464 | |||||||
Marginal R2 / Conditional R2 | 0.113 / NA | 0.132 / NA | 0.113 / 0.112 | 0.100 / 0.018 | 0.048 / 0.048 | 0.059 / 0.084 | 0.072 / 0.214 |
## 2-1 Model (Between-level main effect)
tab_model(
CEM.21.F,
CEM.21.R,
CEM.PLM.21.R,
PLM.21.F,
PLM.21.R,
MLM.21.F,
MLM.21.R,
show.ci=FALSE, show.se=TRUE, collapse.se=TRUE, string.est="Coef.",
show.icc=FALSE, show.aic=FALSE, minus.sign="\u2013", digits=3,
dv.labels=c("CEM<br/>MLM-Fixed", "CEM<br/>MLM-Random", "CEM<br/>PLM-REM (OLS)",
"PLM-FEM", "PLM-REM (OLS)", "MLM-Fixed", "MLM-Random"),
title="2-1 Model (Between-level main effect)")
CEM MLM-Fixed |
CEM MLM-Random |
CEM PLM-REM (OLS) |
PLM-FEM | PLM-REM (OLS) | MLM-Fixed | MLM-Random | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Predictors | Coef. | p | Coef. | p | Coef. | p | Coef. | p | Coef. | p | Coef. | p | Coef. | p |
(Intercept) |
4.995 (0.042) |
<0.001 |
4.995 (0.039) |
<0.001 |
4.995 (0.042) |
<0.001 |
4.694 (0.032) |
<0.001 |
4.684 (0.034) |
<0.001 |
4.692 (0.037) |
<0.001 | ||
Xb |
–0.185 (0.031) |
<0.001 |
–0.185 (0.029) |
<0.001 |
–0.185 (0.031) |
<0.001 | ||||||||
Xw |
0.179 (0.014) |
<0.001 |
0.179 (0.023) |
<0.001 |
0.179 (0.014) |
<0.001 | ||||||||
Wcgm |
–0.105 (0.027) |
<0.001 |
–0.106 (0.025) |
<0.001 |
–0.105 (0.027) |
<0.001 |
–0.090 (0.028) |
0.001 |
–0.090 (0.031) |
0.004 |
–0.121 (0.034) |
<0.001 | ||
X |
0.179 (0.015) |
<0.001 |
0.116 (0.014) |
<0.001 |
0.126 (0.014) |
<0.001 |
0.144 (0.020) |
<0.001 | ||||||
Random Effects | ||||||||||||||
σ2 | 1.11 | 0.96 | 1.17 | 1.04 | ||||||||||
τ00 | 0.00 Clus | 0.00 Clus | 0.02 Clus | 0.06 Clus | ||||||||||
τ11 | 0.04 Clus.Xw | 0.03 Clus.X | ||||||||||||
ρ01 | 1.00 Clus | -0.35 Clus | ||||||||||||
N | 122 Clus | 122 Clus | 122 Clus | 122 Clus | ||||||||||
Observations | 1464 | 1464 | 1464 | 1464 | 1464 | 1464 | 1464 | |||||||
Marginal R2 / Conditional R2 | 0.122 / NA | 0.122 / 0.243 | 0.122 / 0.120 | 0.100 / 0.018 | 0.055 / 0.054 | 0.063 / 0.080 | 0.083 / 0.216 |
## 2x1 Model (Cross-level interaction)
tab_model(
CEM.2x1.F,
CEM.2x1.R,
CEM.PLM.2x1.R,
PLM.2x1.F,
PLM.2x1.R,
MLM.2x1.F,
MLM.2x1.R,
show.ci=FALSE, show.se=TRUE, collapse.se=TRUE, string.est="Coef.",
show.icc=FALSE, show.aic=FALSE, minus.sign="\u2013", digits=3,
dv.labels=c("CEM<br/>MLM-Fixed", "CEM<br/>MLM-Random", "CEM<br/>PLM-REM (OLS)",
"PLM-FEM", "PLM-REM (OLS)", "MLM-Fixed", "MLM-Random"),
title="2x1 Model (Cross-level interaction)")
CEM MLM-Fixed |
CEM MLM-Random |
CEM PLM-REM (OLS) |
PLM-FEM | PLM-REM (OLS) | MLM-Fixed | MLM-Random | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Predictors | Coef. | p | Coef. | p | Coef. | p | Coef. | p | Coef. | p | Coef. | p | Coef. | p |
(Intercept) |
5.000 (0.038) |
<0.001 |
5.000 (0.038) |
<0.001 |
5.000 (0.038) |
<0.001 |
4.699 (0.031) |
<0.001 |
4.665 (0.045) |
<0.001 |
4.676 (0.043) |
<0.001 | ||
Xb |
–0.200 (0.029) |
<0.001 |
–0.200 (0.028) |
<0.001 |
–0.200 (0.029) |
<0.001 | ||||||||
Xw |
0.179 (0.013) |
<0.001 |
0.179 (0.014) |
<0.001 |
0.179 (0.013) |
<0.001 | ||||||||
Wcgm |
0.100 (0.035) |
0.004 |
0.100 (0.035) |
0.004 |
0.100 (0.035) |
0.004 |
–0.205 (0.030) |
<0.001 |
–0.252 (0.044) |
<0.001 |
–0.241 (0.042) |
<0.001 | ||
Xb × Wcgm |
–0.200 (0.024) |
<0.001 |
–0.200 (0.024) |
<0.001 |
–0.200 (0.024) |
<0.001 | ||||||||
Xw × Wcgm |
0.195 (0.013) |
<0.001 |
0.195 (0.013) |
<0.001 |
0.195 (0.013) |
<0.001 | ||||||||
X |
0.179 (0.014) |
<0.001 |
0.117 (0.013) |
<0.001 |
0.154 (0.013) |
<0.001 |
0.154 (0.014) |
<0.001 | ||||||
X × Wcgm |
0.195 (0.013) |
<0.001 |
0.112 (0.013) |
<0.001 |
0.160 (0.013) |
<0.001 |
0.159 (0.014) |
<0.001 | ||||||
Random Effects | ||||||||||||||
σ2 | 0.92 | 0.91 | 1.01 | 0.99 | ||||||||||
τ00 | 0.00 Clus | 0.00 Clus | 0.14 Clus | 0.12 Clus | ||||||||||
τ11 | 0.00 Clus.Xw | 0.00 Clus.X | ||||||||||||
ρ01 | 0.16 Clus | |||||||||||||
N | 122 Clus | 122 Clus | 122 Clus | 122 Clus | ||||||||||
Observations | 1464 | 1464 | 1464 | 1464 | 1464 | 1464 | 1464 | |||||||
Marginal R2 / Conditional R2 | 0.272 / NA | 0.274 / NA | 0.273 / 0.270 | 0.224 / 0.153 | 0.104 / 0.102 | 0.171 / 0.273 | 0.170 / 0.278 |