NOTE: model_summary() is preferred.
Usage
regress(
formula,
data,
family = NULL,
digits = 3,
robust = FALSE,
cluster = NULL,
test.rand = FALSE
)Arguments
- formula
Model formula.
- data
Data frame.
- family
[Optional] The same as in
glmandglmer(e.g.,family=binomialfits a logistic regression model).- digits
Number of decimal places of output. Defaults to
3.- robust
[Only for
lmandglm] Robust standard errors. Add a table with heteroskedasticity-robust standard errors (aka. Huber-White standard errors).Options:
FALSE(default),TRUE("HC1"),"HC0","HC1","HC2","HC3","HC4","HC4m","HC5". For details, seesandwich::vcovHC()andjtools::summ.lm().Note:
"HC1"is the default of Stata, while"HC3"is the default suggested by thesandwichpackage.- cluster
[Only for
lmandglm] Cluster-robust standard errors are computed if cluster is set to the name of the input data's cluster variable or is a vector of clusters.- test.rand
[Only for
lmerandglmer]TRUEorFALSE(default). Test random effects (i.e., variance components) by using the likelihood-ratio test (LRT), which is asymptotically chi-square distributed. For large datasets, it is much time-consuming.
Examples
if (FALSE) { # \dontrun{
## lm
regress(Temp ~ Month + Day + Wind + Solar.R, data=airquality, robust=TRUE)
## glm
regress(case ~ age + parity + education + spontaneous + induced,
data=infert, family=binomial, robust="HC1", cluster="stratum")
## lmer
library(lmerTest)
regress(Reaction ~ Days + (Days | Subject), data=sleepstudy)
regress(Preference ~ Sweetness + Gender + Age + Frequency +
(1 | Consumer), data=carrots)
## glmer
library(lmerTest)
data.glmm = MASS::bacteria
regress(y ~ trt + week + (1 | ID), data=data.glmm, family=binomial)
regress(y ~ trt + week + hilo + (1 | ID), data=data.glmm, family=binomial)
} # }
