版权声明:本套课程材料开源,使用和分享必须遵守「创作共用许可协议 CC BY-NC-SA」(来源引用-非商业用途使用-以相同方式共享)
(内容建设中……)
下载安装R包
install.packages("tidyverse")
install.packages("bruceR", dep=TRUE)
加载本地R包
## Load R packages
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.6
✔ forcats 1.0.1 ✔ stringr 1.6.0
✔ ggplot2 4.0.1 ✔ tibble 3.3.0
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.2.0
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
bruceR (v2025.11)
Broadly Useful Convenient and Efficient R functions
Packages also loaded:
✔ dplyr ✔ data.table
✔ tidyr ✔ emmeans
✔ stringr ✔ lmerTest
✔ forcats ✔ effectsize
✔ ggplot2 ✔ performance
✔ cowplot ✔ interactions
Main functions of `bruceR`:
cc() Describe() TTEST()
add() Freq() MANOVA()
.mean() Corr() EMMEANS()
set.wd() Alpha() PROCESS()
import() EFA() model_summary()
print_table() CFA() lavaan_summary()
For full functionality, please install all dependencies:
install.packages("bruceR", dep=TRUE)
Online documentation:
https://psychbruce.github.io/bruceR
To use this package in publications, please cite:
Bao, H. W. S. (2021). bruceR: Broadly useful convenient and efficient R functions (Version 2025.11) [Computer software]. https://doi.org/10.32614/CRAN.package.bruceR
LS0tDQp0aXRsZTogIuOAilLor63oqIDjgIvnrKwx56ug77ya5Z+656GA5YWl6ZeoIg0Kc3VidGl0bGU6ICJodHRwczovL3BzeWNoYnJ1Y2UuZ2l0aHViLmlvL1JDb3Vyc2UvIg0KYXV0aG9yOiAi5YyF5a+S5ZC06ZycIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogdHJ1ZQ0KICAgIHRvY19kZXB0aDogMw0KICAgIHRvY19mbG9hdDoNCiAgICAgIGNvbGxhcHNlZDogZmFsc2UNCiAgICAgIHNtb290aF9zY3JvbGw6IGZhbHNlDQogICAgY29kZV9mb2xkaW5nOiBzaG93DQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICAgIGFuY2hvcl9zZWN0aW9uczogdHJ1ZQ0KICAgICMgZGZfcHJpbnQ6IGthYmxlDQogICAgaGlnaGxpZ2h0OiBweWdtZW50cw0KLS0tDQoNCmBgYHs9aHRtbH0NCjxzdHlsZSB0eXBlPSJ0ZXh0L2NzcyI+DQogIGJvZHkgeyBmb250LWZhbWlseTogIlNvdXJjZSBTYW5zIFBybyIsICJBcmlhbCIsIHNhbnMtc2VyaWY7DQogICAgICAgICBmb250LXNpemU6IDIwcHg7IGNvbG9yOiAjMDAwOyB9DQogIGNvZGUgeyBmb250LWZhbWlseTogIk1hcGxlIE1vbm8gU0MgTkYiLCAiQ29uc29sYXMiLCBtb25vc3BhY2U7IH0NCiAgcHJlIGNvZGUgeyBmb250LXNpemU6IDE2LjhweDsgfQ0KICBwcmUgY29kZSBzcGFuLmRvIHsgZm9udC1zdHlsZTogbm9ybWFsOyBmb250LXdlaWdodDogYm9sZDsgfQ0KICBwcmUgY29kZSBzcGFuLmNvIHsgZm9udC1zdHlsZTogbm9ybWFsOyBjb2xvcjogIzk5OTsgfQ0KICBwcmUgY29kZSBzcGFuLmZ1IHsgY29sb3I6ICM4OTU5YTg7IH0NCiAgI2hlYWRlciB7IHRleHQtYWxpZ246IGNlbnRlcjsgfQ0KICBoMSwgaDIsIGgzIHsgZm9udC13ZWlnaHQ6IGJvbGQ7IH0NCiAgaDEudGl0bGUgeyBmb250LXNpemU6IDM0cHg7IH0NCiAgaDEgeyBmb250LXNpemU6IDMycHg7IH0NCiAgaDIgeyBmb250LXNpemU6IDI4cHg7IH0NCiAgaDMgeyBmb250LXNpemU6IDI0cHg7IH0NCiAgaDQgeyBmb250LXNpemU6IDIwcHg7IH0NCiAgcCwgbGkgeyBmb250LXNpemU6IDIwcHg7IH0NCiAgI1RPQyBsaSB7IGZvbnQtc2l6ZTogMTZweDsgbGluZS1oZWlnaHQ6IDEuMjU7IH0NCiAgYnV0dG9uIHNwYW4geyBmb250LXNpemU6IDE2cHg7IH0NCiAgLnRhYmxlIHsgdGFibGUtbGF5b3V0OiBmaXhlZDsgd2lkdGg6IGF1dG87IG1hcmdpbjogMWVtIGF1dG87IH0NCiAgLnRhYmxlIHsgYm9yZGVyLXRvcDogMXB4IHNvbGlkICMxMTE7IGJvcmRlci1ib3R0b206IDFweCBzb2xpZCAjMTExOyB9DQogIC50YWJsZSB0aGVhZCB7IGJhY2tncm91bmQtY29sb3I6ICNmMGYwZjA7IH0NCiAgLnRhYmxlIHRyLmV2ZW4geyBiYWNrZ3JvdW5kLWNvbG9yOiAjZjVmNWY1OyB9DQogIC50YWJsZSB0aGVhZCB0ciB0aCB7IGJvcmRlci1ib3R0b20td2lkdGg6IDBweDsgbGluZS1oZWlnaHQ6IDEuMjsgfQ0KICAudGFibGUgdGJvZHkgdHIgdGQgeyBib3JkZXItdG9wLXdpZHRoOiAwcHg7IGxpbmUtaGVpZ2h0OiAxLjI7IH0NCjwvc3R5bGU+DQoNCjxwIHN0eWxlPSJmb250LXNpemU6IDEycHgiPueJiOadg+WjsOaYju+8muacrOWll+ivvueoi+adkOaWmeW8gOa6kO+8jOS9v+eUqOWSjOWIhuS6q+W/hemhu+mBteWuiOOAjOWIm+S9nOWFseeUqOiuuOWPr+WNj+iuriBDQyBCWS1OQy1TQeOAje+8iOadpea6kOW8leeUqC3pnZ7llYbkuJrnlKjpgJTkvb/nlKgt5Lul55u45ZCM5pa55byP5YWx5Lqr77yJPGltZyBzcmM9Imh0dHBzOi8vcHN5Y2hicnVjZS5naXRodWIuaW8vaW1nL0NDLUJZLU5DLVNBLmpwZyIgd2lkdGg9IjEyMHB4IiBoZWlnaHQ9IjQycHgiIHN0eWxlPSJmbG9hdDogcmlnaHQiIC8+PC9wPg0KYGBgDQoNCmBgYHtyIENvbmZpZywgaW5jbHVkZT1GQUxTRX0NCm9wdGlvbnMoDQogIGtuaXRyLmthYmxlLk5BID0gIiIsDQogIGRpZ2l0cyA9IDQNCikNCmtuaXRyOjpvcHRzX2NodW5rJHNldCgNCiAgY29tbWVudCA9ICIiLA0KICBmaWcud2lkdGggPSA4LA0KICBmaWcuaGVpZ2h0ID0gNiwNCiAgZHBpID0gNTAwDQopDQpgYGANCg0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCu+8iOWGheWuueW7uuiuvuS4reKApuKApu+8iQ0KDQojIOS4i+i9veWuieijhVLljIUNCg0KYGBge3IgRG93bmxvYWQgcGtncywgZXZhbD1GQUxTRX0NCmluc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpDQppbnN0YWxsLnBhY2thZ2VzKCJicnVjZVIiLCBkZXA9VFJVRSkNCmBgYA0KDQojIOWKoOi9veacrOWcsFLljIUNCg0KYGBge3IgTG9hZCBwa2dzLCB3YXJuaW5nPUZBTFNFfQ0KIyMgTG9hZCBSIHBhY2thZ2VzDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoYnJ1Y2VSKQ0KYGBgDQo=